318 resultados para Livingston, Leon Ray 1872-
Resumo:
Th/U and Th/K data from spectral gamma-ray logs obtained from outcrop successions have been used as a rapid and inexpensive proxy for determining possible episodes of humid-arid palaeoclimate change. Such outcrop-based measurements have never been tested using spectral gamma-ray data obtained from wireline logs in subsurface boreholes. Th/K and Th/U ratios have traditionally been used to decipher sequence stratigraphic patterns, at outcrop and in borehole. The possible influence of palaeoclimate on such ratio changes has yet to be proven, especially from borehole data. In this work, we compare borehole-derived Th/K (and to a lesser extent Th/U) to palaeoenvironmental changes inferred from palynology and deduce that both sea level and changing hinterland weathering regimes caused discrete fluctuations observed in the spectral gamma-ray logs. This is the first time such subsurface information has been used in this way. Interpretation of wireline logs in terms of palaeoclimate as well as sea level may now be considered, and the use of such logs in palaeoclimate reconstruction is strengthened.
Resumo:
Gamma-ray positron annihilation spectra of the noble gases are simulated using computational chemistry tools for the bound electron wavefunctions and plane-wave approximation for the low-energy positron. The present annihilation line shapes, i.e. the full width at half maximum, Delta epsilon, of the gamma-ray annihilation spectra for He and Ar (valence) agree well with available independent atomic calculations using a different algorithm. For other noble gases they achieve moderate agreement with the experimental measurements. It is found that the contributions of various atomic electron shells to the spectra depend significantly on their principal quantum number n and orbital angular momentum quantum number l. The present study further reveals that the outermost ns electrons of the noble gases exhibit spectral line shapes in close agreement with those measured, indicating (as expected) that the measurements are not due to a simple sum over the momentum densities for all atomic electrons. The robust nature of the present approach makes it possible for us to proceed to more complex molecular systems using the tools of modern computational chemistry.