423 resultados para Laser-plasma interaction


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Large magnetic fields generated during laser-matter interaction at irradiances of ~ 5×1014 W?cm-2 have been measured using a deflectometry technique employing MeV laser-accelerated protons. Azimuthal magnetic fields were identified unambiguously via a characteristic proton deflection pattern and found to have an amplitude of ~ 45 T in the outer coronal region. Comparison with magnetohydrodynamic simulations confirms that in this regime the mathTe×mathne source is the main field generation mechanism, while additional terms are negligible.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multi-Mev proton beams generated by target normal sheath acceleration (TNSA) during the interaction of an ultra intense laser beam (Ia parts per thousand yen10(19) W/cm(2)) with a thin metallic foil (thickness of the order of a few tens of microns) are particularly suited as a particle probe for laser plasma experiments. The proton imaging technique employs a laser-driven proton beam in a point-projection imaging scheme as a diagnostic tool for the detection of electric fields in such experiments. The proton probing technique has been applied in experiments of relevance to inertial confinement fusion (ICF) such as laser heated gasbags and laser-hohlraum experiments. The data provides direct information on the onset of laser beam filamentation and on the plasma expansion in the hohlraum's interior, and confirms the suitability and usefulness of this technique as an ICF diagnostic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The evolution of the intensity of a relativistic laser beam propagating through a dense quantum plasma is investigated, by considering different plasma regimes. A cold quantum fluid plasma and then a thermal quantum description(s) is (are) adopted, in comparison with the classical case of reference. Considering a Gaussian beam cross-section, we investigate both the longitudinal compression and lateral/longitudinal localization of the intensity of a finite-radius electromagnetic pulse. By employing a quantum plasma fluid model in combination with Maxwell's equations, we rely on earlier results on the quantum dielectric response, to model beam-plasma interaction. We present an extensive parametric investigation of the dependence of the longitudinal pulse compression mechanism on the electron density in cold quantum plasmas, and also study the role of the Fermi temperature in thermal quantum plasmas. Our numerical results show pulse localization through a series of successive compression cycles, as the pulse propagates through the plasma. A pulse of 100 fs propagating through cold quantum plasma is compressed to a temporal size of approximate to 1.35 attosecond and a spatial size of approximate to 1.08 10(-3) cm. Incorporating Fermi pressure via a thermal quantum plasma model is shown to enhance localization effects. A 100 fs pulse propagating through quantum plasma with a Fermi temperature of 350 K is compressed to a temporal size of approximate to 0.6 attosecond and a spatial size of approximate to 2.4 10(-3) cm. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have studied the effect of prepulses in enhancing the efficiency of generating ASE beams in soft X-ray laser plasma amplifiers based on pumping Ne-like ions, Slab targets were irradiated with a weak prepulse followed by a main plasma heating pulse of nanosecond duration, Time-integrated; time and spectrally resolved and time and angularly resolved lasing emissions on the 3p-3s (J=0-1) XUV lasing lines of Ne-like Ni, Cu and Zn at wavelengths 232 Angstrom 221 Angstrom and 212 Angstrom respectively have been monitored. Measurements were made for pre-pulse/main-pulse intensity ratios from 10(-5)-10(-1) and for pump delay times of 2 ns and 4.5 ns. Zinc is shown to exhibit a peak in output intensity at similar to 2x10(-3) pre-pulse fraction for a 4.5 ns pump delay, with a main pulse pump intensity of similar to 1.3x10(13) W cm(-2) on a 20 mm target. The Zn lasing emission had a duration of similar to 240 ps and this was insensitive to prepulse fraction. The J=0-1 XUV laser output for nickel and copper increased monotonically with prepulse fraction, with copper targets showing least sensitivity to either prepulse level or prepulse to main pulse delay. Under the conditions of the study, the pre-pulse level was observed to haveno significant influence on the output intensity of the 3p-3s (J=2-1) lines of any of the elements investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Target normal measurements of proton energy spectra from ultrathin (50-200 nm) planar foil targets irradiated by 10(19) W cm(-2) 40 fs laser pulses exhibit broad maxima that are not present in the energy spectra from micron thickness targets (6 mu m). The proton flux in the peak is considerably greater than the proton flux observed in the same energy range in thicker targets. Numerical modelling of the experiment indicates that this spectral modification in thin targets is caused by magnetic fields that grow at the rear of the target during the laser-target interaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report spatially and temporally resolved measurements of self-generated multi-megagauss magnetic fields produced during ultrahigh intensity laser plasma interactions. Spatially resolved measurements of the magnetic fields show an asymmetry in the distribution of field with respect to the angle of laser incidence. Temporally resolved measurements of the self-generated third harmonic suggest that the strength of the magnetic field is proportional to the square root of laser intensity (i.e., the laser B-field) during the rise of the laser pulse. The experimental results are compared with numerical simulations using a particle-in-cell code which also shows clear asymmetry of the field profile and similar magnetic field growth rates and scalings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Space plasmas provide abundant evidence of highly energetic particle population, resulting in a long-tailed non-Maxwellian distribution. Furthermore, the first stages in the evolution of plasmas produced during laser-matter interaction are dominated by nonthermal electrons, as confirmed by experimental observation and computer simulations. This phenomenon is efficiently modelled via a kappa-type distribution. We present an overview, from first principles, of the effect of superthermality on the characteristics of electrostatic plasma waves. We rely on a fluid model for ion-acoustic excitations, employing a kappa distribution function to model excess superthermality of the electron distribution. Focusing on nonlinear excitations (solitons), in the form of solitary waves (pulses), shocks and envelope solitons, and employing standard methodological tools of nonlinear plasmadynamical analysis, we discuss the role of excess superthermality in their propagation dynamics (existence laws, stability profile), geometric characteristics and stability. Numerical simulations are employed to confirm theoretical predictions, namely in terms of the stability of electrostatic pulses, as well as the modulational stability profile of bright- and dark-type envelope solitons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up around the ELIMED project with the aim to work on the conceptual design, technical and experimental realization of this core beamline of the ELI Beamlines facility. © 2013 SPIE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed. (C) 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The collision of two plasma clouds at a speed that exceeds the ion acoustic speed can result in the formation of shocks. This phenomenon is observed not only in astrophysical scenarios, such as the propagation of supernova remnant (SNR) blast shells into the interstellar medium, but also in laboratory-based laser-plasma experiments. These experiments and supporting simulations are thus seen as an attractive platform for small-scale reproduction and study of astrophysical shocks in the laboratory. We model two plasma clouds, which consist of electrons and ions, with a 2D particle-in-cell simulation. The ion temperatures of both clouds differ by a factor of ten. Both clouds collide at a speed that is realistic for laboratory studies and for SNR shocks in their late evolution phase, like that of RCW86. A magnetic field, which is orthogonal to the simulation plane, has a strength that is comparable to that of SNR shocks. A forward shock forms between the overlap layer of both plasma clouds and the cloud with cooler ions. A large-amplitude ion acoustic wave is observed between the overlap layer and the cloud with hotter ions. It does not steepen into a reverse shock because its speed is below the ion acoustic speed. A gradient of the magnetic field amplitude builds up close to the forward shock as it compresses the magnetic field. This gradient gives rise to an electron drift that is fast enough to trigger an instability. Electrostatic ion acoustic wave turbulence develops ahead of the shock, widens its transition layer, and thermalizes the ions, but the forward shock remains intact. © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Detailed knowledge of fast electron energy transport following the interaction of ultrashort intense laser pulses is a key subject for fast ignition. This is a problem relevant to many areas of laser-plasma physics with particular importance to fast ignition and X-ray secondary source development, necessary for the development of large-scale facilities such as HiPER and ELI. Operating two orthogonal crystal spectrometers set at Bragg angles close to 45 degrees determines the X-ray s- and p-polarization ratio. From this ratio, it is possible to infer the velocity distribution function of the fast electron beam within the dense plasma. We report on results of polarization measurements at high density for sulphur and nickel buried layer targets in the high intensity range of 10(19) - 10(21) Wcm(-2). We observe at 45 degrees the Ly-alpha doublet using two sets of orthogonal highly-orientated pyrolytic graphite (HOPG) crystals set in 1(st) order for sulphur and 3(rd) order for nickel.