139 resultados para LPS
Resumo:
Lipopolysaccharide (LPS) is the major component of the outer leaflet of the outer membrane of Gram-negative bacteria. The LPS molecule is composed of two biosynthetic entities: the lipid A--core and the O-polysaccharide (O-antigen). Most biological effects of LPS are due to the lipid A part, however, there is an increasing body of evidence indicating that O-antigen (O-ag) plays an important role in effective colonization of host tissues, resistance to complement-mediated killing and in the resistance to cationic antimicrobial peptides that are key elements of the innate immune system. In this review, we will discuss: (i) the work done on the genetics and biosynthesis of the O-ags in the genus Yersinia; (ii) the role of O-ag in virulence of these bacteria; (iii) the work done on regulation of the O-ag gene cluster expression and; (iv) the impact that the O-ag expression has on other bacterial surface and membrane components.
Resumo:
Pathogenic biotypes of Yersinia enterocolitica (serotypes O:3, O:8, O:9, and O:13), but not environmental biotypes (serotypes O:5, O:6, O:7,8, and O:7,8,13,19), increased their permeability to hydrophobic probes when they were grown at pH 5.5 or in EGTA-supplemented (Ca(2+)-restricted) media at 37 degrees C. A similar observation was also made when representative strains of serotypes O:8 and O:5 were tested after brief contact with human monocytes. The increase in permeability was independent of the virulence plasmid. The role of lipopolysaccharide (LPS) in this phenomenon was examined by using Y. enterocolitica serotype O:8. LPS aggregates of bacteria grown in acidic or EGTA-supplemented broth took up more N-phenylnaphthylamine than LPS aggregates of bacteria grown in standard broth and also showed a marked increase in acyl chain fluidity which correlated with permeability, as determined by measurements obtained in the presence of hydrophobic dyes. No significant changes in O-antigen polymerization were observed, but lipid A acylation changed depending on the growth conditions. In standard medium at 37 degrees C, there were hexa-, penta-, and tetraacyl lipid A forms, and the pentaacyl form was dominant. The amount of tetraacyl lipid A increased in EGTA-supplemented and acidic media, and hexaacyl lipid A almost disappeared under the latter conditions. Our results suggest that pathogenic Y. enterocolitica strains modulate lipid A acylation coordinately with expression of virulence proteins, thus reducing LPS packing and increasing outer membrane permeability. The changes in permeability, LPS acyl chain fluidity, and lipid A acylation in pathogenic Y. enterocolitica strains approximate the characteristics in Yersinia pseudotuberculosis and Yersinia pestis and suggest that there is a common outer membrane pattern associated with pathogenicity.
Resumo:
The lipopolysaccharide (LPS) O-antigen of Yersinia enterocolitica serotype O:8 is formed by branched pentasaccharide repeat units that contain N-acetylgalactosamine (GalNAc), L-fucose (Fuc), D-galactose (Gal), D-mannose (Man), and 6-deoxy-D-gulose (6d-Gul). Its biosynthesis requires at least enzymes for the synthesis of each nucleoside diphosphate-activated sugar precursor; five glycosyltransferases, one for each sugar residue; a flippase (Wzx); and an O-antigen polymerase (Wzy). As this LPS shows a characteristic preferred O-antigen chain length, the presence of a chain length determinant protein (Wzz) is also expected. By targeted mutagenesis, we identify within the O-antigen gene cluster the genes encoding Wzy and Wzz. We also present genetic and biochemical evidence showing that the gene previously called galE encodes a UDP-N-acetylglucosamine-4-epimerase (EC 5.1.3.7) required for the biosynthesis of the first sugar of the O-unit. Accordingly, the gene was renamed gne. Gne also has some UDP-glucose-4-epimerase (EC 5.1.3.2) activity, as it restores the core production of an Escherichia coli K-12 galE mutant. The three-dimensional structure of Gne was modeled based on the crystal structure of E. coli GalE. Detailed structural comparison of the active sites of Gne and GalE revealed that additional space is required to accommodate the N-acetyl group in Gne and that this space is occupied by two Tyr residues in GalE whereas the corresponding residues present in Gne are Leu136 and Cys297. The Gne Leu136Tyr and Cys297Tyr variants completely lost the UDP-N-acetylglucosamine-4-epimerase activity while retaining the ability to complement the LPS phenotype of the E. coli galE mutant. Finally, we report that Yersinia Wzx has relaxed specificity for the translocated oligosaccharide, contrary to Wzy, which is strictly specific for the O-unit to be polymerized.
Resumo:
Lipopolysaccharide (LPS) is a glycolipid present in the outer membrane of all Gram-negative bacteria, and it is one of the signature molecules recognized by the receptors of the innate immune system. In addition to its lipid A portion (the endotoxin), its O-chain polysaccharide (the O-antigen) plays a critical role in the bacterium-host interplay and, in a number of bacterial pathogens, it is a virulence factor. We present evidence that, in Yersinia enterocolitica serotype O:8, a complex signalling network regulates O-antigen expression in response to temperature. Northern blotting and reporter fusion analyses indicated that temperature regulates the O-antigen expression at the transcriptional level. Promoter cloning showed that the O-antigen gene cluster contains two transcriptional units under the control of promoters P(wb1) and P(wb2). The activity of both promoters is under temperature regulation and is repressed in bacteria grown at 37 degrees C. We demonstrate that the RosA/RosB efflux pump/potassium antiporter system and Wzz, the O-antigen chain length determinant, are indirectly involved in the regulation mainly affecting the activity of promoter P(wb2). The rosAB transcription, under the control of P(ros), is activated at 37 degrees C, and P(wb2) is repressed through the signals generated by the RosAB system activation, i.e. decreased [K+] and increased [H+]. The wzz transcription is under the control of P(wb2), and we show that, at 37 degrees C, overexpression of Wzz downregulates slightly the P(wb1) and P(wb2) activities and more strongly the P(ros) activity, with the net result that more O-antigen is produced. Finally, we demonstrate that overexpression of Wzz causes membrane stress that activates the CpxAR two-component signal transduction system.
Resumo:
Most bacterial pathogens are resistant to cationic antimicrobial peptides (CAMPs) that are key components of the innate immunity of both vertebrates and invertebrates. In Gram-negative bacteria, the known CAMPs resistance mechanisms involve outer membrane (OM) modifications and specifically those in the lipopolysaccharide (LPS) molecule. Here we report, the characterization of a novel CAMPs resistance mechanism present in Yersinia that is dependent on an efflux pump/potassium antiporter system formed by the RosA and RosB proteins. The RosA/RosB system is activated by a temperature shift to 37 degrees C, but is also induced by the presence of the CAMPs, such as polymyxin B. This is the first report of a CAMPs resistance system that is induced by the presence of CAMPs. It is proposed that the RosA/RosB system protects the bacteria by both acidifying the cytoplasm to prevent the CAMPs action and pumping the CAMPs out of the cell.
Resumo:
The outer membrane (OM) of the intracellular parasite Brucella abortus is permeable to hydrophobic probes and resistant to destabilization by polycationic peptides and EDTA. The significance of these unusual properties was investigated in a comparative study with the opportunistic pathogens of the genus Ochrobactrum, the closest known Brucella relative. Ochrobactrum spp. OMs were impermeable to hydrophobic probes and sensitive to polymyxin B but resistant to EDTA. These properties were traced to lipopolysaccharide (LPS) because (i) insertion of B. abortus LPS, but not of Escherichia coli LPS, into Ochrobactrum OM increased its permeability; (ii) permeability and polymyxin B binding measured with LPS aggregates paralleled the results with live bacteria; and (iii) the predicted intermediate results were obtained with B. abortus-Ochrobactrum anthropi and E. coli-O. anthropi LPS hybrid aggregates. Although Ochrobactrum was sensitive to polymyxin, self-promoted uptake and bacterial lysis occurred without OM morphological changes, suggesting an unusual OM structural rigidity. Ochrobactrum and B. abortus LPSs showed no differences in phosphate, qualitative fatty acid composition, or acyl chain fluidity. However, Ochrobactrum LPS, but not B. abortus LPS, contained galacturonic acid. B. abortus and Ochrobactrum smooth LPS aggregates had similar size and zeta potential (-12 to -15 mV). Upon saturation with polymyxin, zeta potential became positive (1 mV) for Ochrobactrum smooth LPS while remaining negative (-5 mV) for B. abortus smooth LPS, suggesting hindered access to inner targets. These results show that although Ochrobactrum and Brucella share a basic OM pattern, subtle modifications in LPS core cause markedly different OM properties, possibly reflecting the adaptive evolution of B. abortus to pathogenicity.
Resumo:
The permeability of the outer membrane (OM) to hydrophobic probes and its susceptibility to bactericidal cationic peptides were investigated for natural rough Brucella ovis and for mutant rough Brucella abortus strains. The OM of B. ovis displayed an abrupt and faster kinetic profile than rough B. abortus during the uptake of the hydrophobic probe N-phenyl-naphthylamine. B. ovis was more sensitive than rough B. abortus to the action of cationic peptides. Bactenecins 5 and 7 induced morphological alterations on the OMs of both rough Brucella strains. B. ovis lipopolysaccharide (LPS) captured considerably more polymyxin B than LPSs from both rough and smooth B. abortus strains. Polymyxin B, poly-L-lysine, and poly-L-ornithine produced a thick coating on the surfaces of both strains, which was more evident in B. ovis than in rough B. abortus. The distinct functional properties of the OMs of these two rough strains correlate with some structural differences of their OMs and with their different biological behaviors in animals and culture cells.
Resumo:
Lipopolysaccharide (LPS) of Yersinia enterocolitica O:3 has an inner core linked to both the O-antigen and to an outer core hexasaccharide that forms a branch. The biological role of the outer core was studied using polar and non-polar mutants of the outer core biosynthetic operon. Analysis of O-antigen- and outer core-deficient strains suggested a critical role for the outer core in outer membrane properties relevant in resistance to antimicrobial peptides and permeability to hydrophobic agents, and indirectly relevant in resistance to killing by normal serum. Wild-type bacteria but not outer core mutants killed intragastrically infected mice, and the intravenous lethal dose was approximately 10(4)-fold higher for outer core mutants. After intragastric infection, outer core mutants colonized Peyer's patches and invaded mesenteric lymph nodes, spleen and liver, and induced protective immunity against wild-type bacteria. In mice co-infected intragastrically with an outer core mutant-wild type mixture, both strains colonized Peyer's patches similarly during the first 2 days, but the mutant was much less efficient in colonizing deeper organs and was cleared faster from Peyer's patches. The results demonstrate that outer core is required for Y. enterocolitica O:3 full virulence, and strongly suggest that it provides resistance against defence mechanisms (most probably those involving bactericidal peptides).
Resumo:
The hydrophobic probe N-phenyl-1-naphthylamine accumulated less in non-pathogenic Yersinia spp. and non-pathogenic and pathogenic Yersinia enterocolitica than in Yersinia pseudotuberculosis or Yersinia pestis. This was largely due to differences in the activity of efflux systems, but also to differences in outer membrane permeability because uptake of the probe in KCN/arsenate-poisoned cells was slower in the former group than in Y. pseudotuberculosis and Y. pestis. The probe accumulation rate was higher in Y. pseudotuberculosis and Y. pestis grown at 37 degrees C than at 26 degrees C and was always highest in Y. pestis. These yersiniae had LPSs with shorter polysaccharides than Y. enterocolitica, particularly when grown at 37 degrees C. Gelliquid-crystalline phase transitions (Tc 28-31 degrees C) were observed in LPS aggregates of Y. enterocolitica grown at 26 and 37 degrees C, with no differences between non-pathogenic and pathogenic strains. Y. pseudotuberculosis and Y. pestis LPSs showed no phase transitions and, although the fluidity of LPSs of Y. pseudotuberculosis and Y. enterocolitica grown at 26 degrees C were close below the Tc of the latter, they were always in a more fluid state than Y. enterocolitica LPS. Comparison with previous studies of Salmonella choleraesuis subsp. choleraesuis serotype minnesota rough LPS showed that the increased fluidity and absence of transition of Y. pseudotuberculosis and Y. pestis LPSs cannot be explained by their shorter polysaccharides and suggested differences at the lipid A/core level. It is proposed that differences in LPS-LPS interactions and efflux activity explain the above observations and reflect the adaptation of Yersinia spp. to different habitats.
Resumo:
Sensitivities to polycationic peptides and EDTA were compared in Yersinia enterocolitica pathogenic and environmental biogroups. As shown by changes in permeability to the fluorescent hydrophobic probe N-phenylnaphthylamine (NPN), the outer membranes (OMs) of pathogenic and environmental strains grown at 26 degrees C in standard broth were more resistant to poly-L-lysine, poly-L-ornithine, melittin, cecropin P1, polymyxin B, and EDTA than Escherichia coli OMs. At 37 degrees C, OMs of pathogenic biogroups were resistant to EDTA and polycations and OMs of environmental strains were resistant to EDTA whereas E. coli OMs were sensitive to both EDTA and polycations. Similar results were found when testing deoxycholate sensitivity after polycation exposure or when isogenic pairs with or without virulence plasmid pYV were compared. With bacteria grown without Ca++ available, OM permeability to NPN was drastically increased in pathogenic but not in environmental strains or E. coli. Under these conditions, OMs of pYV+ and pYV- cells showed small differences in NPN permeability but differences in polycation sensitivity could not be detected by fluorimetry. O:1,6 (environmental type) lipopolysaccharide (LPS), but not O:3 or O:8 LPS, was markedly rough at 37 degrees C, and this could explain the differences in polycation sensitivity. LPSs from serotypes O:3 and O:8 grown at 37 degrees C were more permeable to NPN than O:1,6 LPS, and O:8 LPS was resistant to polycation-induced permeabilization. These data suggest that LPSs relate to some but not all the OM differences described. It is hypothesized that the different OM properties of environmental and pathogenic biogroups reflect the adaptation of the latter biogroups to pathogenicity.
Resumo:
The action of bactericidal polycationic peptides was compared in Yersinia spp. by testing peptide binding to live cells and changes in outer membrane (OM) morphology and permeability. Moreover, polycation interaction with LPS was studied by measuring the dependence of dansylcadaverine displacement and zeta potential on polycation concentration. When growth at 37 degrees C, Yersinia pestis and Yersinia pseudotuberculosis bound less polymyxin B (PMB) than pathogenic or non-pathogenic Yersinia enterocolitica, regardless of virulence plasmid expression. Y. pseudotuberculosis OMs were unharmed by PMB concentrations causing extensive OM blebbing in Y. enterocolitica. The permeability to lysozyme caused by PMB was greater in Y. enterocolitica than in Y. pseudotuberculosis or Y. pestis and differences increased at 37 degrees C. Similar observations were made with other polycations using a polymyxin/novobiocin permeability assay. With LPS of cells grown at 26 degrees C, polycation binding was highest for Y. pseudotuberculosis and lowest for Y. pestis, with Y. enterocolitica yielding intermediate results which were lower for pathogenic than for non-pathogenic strains. With LPS of cells grown at 37 degrees C, polycation binding remained unchanged for Y. pestis and pathogenic Y. enterocolitica, increased for non-pathogenic Y. enterocolitica and decreased for Y. pseudotuberculosis to Y. pestis levels. Polycation binding related in part to differences in charge density (zeta potential) of LPS aggregates, suggesting similar effects at bacterial surfaces. It is suggested that species and temperature differences in polycation resistance relate to infection route, invasiveness and intracellular multiplication of Yersinia spp.
Resumo:
Mammalian group-II phospholipases A2 (PLA2) of inflammatory fluids display bactericidal properties, which are dependent on their enzymatic activity. This study shows that myotoxins II (Lys49) and III (Asp49), two group-II PLA2 isoforms from the venom of Bothrops asper, are lethal to a broad spectrum of bacteria. Since the catalytically inactive Lys49 myotoxin II isoform has similar bactericidal effects to its catalytically active Asp49 counterpart, a bactericidal mechanism that is independent of an intrinsic PLA2 activity is demonstrated. Moreover, a synthetic 13-residue peptide of myotoxin II, comprising residues 115-129 (common numbering system) near the C-terminal loop, reproduced the bactericidal effect of the intact protein. Following exposure to the peptide or the protein, accelerated uptake of the hydrophobic probe N-phenyl-N-naphthylamine was observed in susceptible but not in resistant bacteria, indicating that the lethal effect was initiated on the bacterial membrane. The outer membrane, isolated lipopolysaccharide (LPS), and lipid A of susceptible bacteria showed higher binding to the myotoxin II-(115-129)-peptide than the corresponding moieties of resistant strains. Bacterial LPS chimeras indicated that LPS is a relevant target for myotoxin II-(115-129)-peptide. When heterologous LPS of the resistant strain was present in the context of susceptible bacteria, the chimera became resistant, and vice versa. Myotoxin II represents a group-II PLA2 with a direct bactericidal effect that is independent of an intrinsic enzymatic activity, but adscribed to the presence of a short cluster of basic/hydrophobic amino acids near its C-terminal loop.
Resumo:
The O-antigen of lipopolysaccharide (LPS) is required for virulence in Yersinia enterocolitica serotype O:8. Here we evaluated the importance of controlling the O-antigen biosynthesis using an in vivo rabbit model of infection. Y. enterocolitica O:8 wild-type strain was compared to three mutants differing in the O-antigen phenotype: (i) the rough strain completely devoid of the O-antigen, (ii) the wzy strain that lacks the O-antigen polymerase (Wzy protein) and expresses LPS with only one repeat unit, and (iii) the wzz strain that lacks the O-antigen chain length determinant (Wzz protein) and expresses LPS without modal distribution of O-antigen chain lengths. The most attenuated strain was the wzz mutant. The wzz bacteria were cleared from the tissues by day 30, the blood parameters were least dramatic and histologically only immunomorphological findings were seen. The level of attenuation of the rough and the wzy strain bacteria was between the wild-type and the wzz strain. Wild-type bacteria were highly resistant to killing by polymorphonuclear leukocytes, the wzz strain bacteria were most sensitive and the rough and wzy strain bacteria were intermediate resistant. These results clearly demonstrated that the presence of O-antigen on the bacterial surface is not alone sufficient for full virulence, but also there is a requirement for its controlled chain length.
Resumo:
Complement activation is involved in a variety of retinal diseases. We have shown previously that a number of complement components and regulators can be produced locally in the eye, and that retinal pigment epithelial (RPE) cells are the major source of complement expression at the retina-choroidal interface. The expression of complement components by RPE cells is regulated by inflammatory cytokines. Under aging or inflammatory conditions, microglia and macrophages accumulate in the subretinal space, where they are in close contact with RPE cells. In this study, we investigated the effect of activated macrophages on complement expression by RPE cells. Mouse RPE cells were treated with the supernatants from un-activated bone marrow-derived macrophages (BM-DMs), the classically activated BM-DMs (M1) and different types of the alternatively activated BM-DMs (M2a by IL-4, M2b by immune complex and lipopolysaccharide (LPS), M2c by IL-10). The expression of inflammatory cytokines and complement genes by RPE cells were determined by real-time RT-PCR. The protein expression of CFB, C3, C1INH, and C1r was examined by Western blot. Our results show that un-stimulated RPE cells express a variety of complement-related genes, and that the expression levels of complement regulators, including C1r, factor H (CFH), DAF1, CD59, C1INH, Crry, and C4BP genes are significantly higher than those of complement component genes (C2, C4, CFB, C3, and C5). Macrophage supernatants increased inflammatory cytokine (IL-1ß, IL-6, iNOS), chemokine (CCL2) and complement expression in RPE cells. The supernatants from M0, M2a and M2c macrophages mildly up-regulated (2~3.5-fold) CFB, CFH and C3 gene expression in RPE cells, whereas the supernatants from M1 and M2b macrophages massively increased (10~30-fold) CFB and C3 gene expression in RPE cells. The expression of other genes, including C1r, C2, C4, CFH, Masp1, C1INH, and C4BP in RPE cells was also increased by the supernatants of M1 and M2b macrophages; however, the increment levels were significantly lower than CFB and C3 genes. M1 and M2b macrophage supernatants enhanced CFB (Bb fragment) protein expression and C3 secretion by RPE cells. M1 macrophages may affect complement expression in RPE cells through the STAT1 pathway. Our results suggest that under inflammatory conditions, activated macrophages could promote the alternative pathway of complement activation in the retina via induction of RPE cell CFB and C3 expression.
Resumo:
The role of hydrogen sulfide (H2 S) in inflammation remains unclear with both pro- and anti-inflammatory actions of this gas described. We have now assessed the effect of GYY4137 (a slow-releasing H2 S donor) on lipopolysaccharide (LPS)-evoked release of inflammatory mediators from human synoviocytes (HFLS) and articular chondrocytes (HAC) in vitro. We have also examined the effect of GYY4137 in a complete Freund's adjuvant (CFA) model of acute joint inflammation in the mouse. GYY4137 (0.1-0.5 mM) decreased LPS-induced production of nitrite (NO2 (-) ), PGE2 , TNF-a and IL-6 from HFLS and HAC, reduced the levels and catalytic activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced LPS-induced NF-?B activation in vitro. Using recombinant human enzymes, GYY4137 inhibited the activity of COX-2, iNOS and TNF-a converting enzyme (TACE). In the CFA-treated mouse, GYY4137 (50 mg/kg, i.p.) injected 1 hr prior to CFA increased knee joint swelling while an anti-inflammatory effect, as demonstrated by reduced synovial fluid myeloperoxidase (MPO) and N-acetyl-ß-D-glucosaminidase (NAG) activity and decreased TNF-a, IL-1ß, IL-6 and IL-8 concentration, was apparent when GYY4137 was injected 6 hrs after CFA. GYY4137 was also anti-inflammatory when given 18 hrs after CFA. Thus, although GYY4137 consistently reduced the generation of pro-inflammatory mediators from human joint cells in vitro, its effect on acute joint inflammation in vivo depended on the timing of administration.