113 resultados para LDL
Resumo:
Glycosylation of low density lipoproteins obtained from 16 patients with Type 1 (insulin-dependent) diabetes and from 16 age-, sex-, and race-matched controls, was determined. The diabetic patients were normolipaemic and were in good or fair glycaemic control. Eleven patients performed home blood glucose monitoring. Glycosylation of low density lipoproteins in the diabetic patients was significantly higher (p less than 0.001) than in the control subjects, and was significantly correlated with haemoglobin A1c, (p less than 0.01), glycosylation of plasma proteins, (p less than 0.001), and mean home blood glucose, (p less than 0.01). This study confirms that, in diabetic patients, increased glycosylation of low density lipoprotein occurs to an extent which correlates closely with other commonly used indices of glycaemic control.
Resumo:
Serum PEDF levels (mean (S.D.)) were increased in 96 Type 2 diabetic vs. 54 non-diabetic subjects; 5.3 (2.8) vs. 3.2 (2.0)mug/ml, p
Resumo:
Modified lipoproteins induce autoimmune responses including the synthesis of autoantibodies with pro-inflammatory characteristics. Circulating modified lipoprotein autoantibodies combine with circulating antigens and form immune complexes (IC). We now report the results of a study investigating the role of circulating IC containing modified lipoproteins in the progression of carotid intima-media thickness (IMT) in patients enrolled in the Epidemiology of Diabetes Interventions and Complications (EDIC) Trial, a follow-up study of the Diabetes Control and Complications Trial (DCCT). This cohort includes 1229 patients with type 1 diabetes in whom B-mode ultrasonography of internal and common carotid arteries was performed in 1994-1996 and in 1998-2000. Conventional CHD risk factors, antibodies against modified forms of LDL and modified lipoprotein IC were determined in 1050 of these patients from blood collected in 1996-1998. Cholesterol and apolipoprotein B content of IC (surrogate markers of modified ApoB-rich lipoproteins) were significantly higher in patients who showed progression of the internal carotid IMT than in those showing no progression, regression or mild progression. Multivariate linear and logistic regression modeling using conventional and non-conventional risk factors showed that the cholesterol content of IC was a significant positive predictor of internal carotid IMT progression. In conclusion these data demonstrate that increased levels of modified ApoB-rich IC are associated with increased progression of internal carotid IMT in the DCCT/EDIC cohort of type 1 diabetes.
Resumo:
A single base deletion (211delG) in the low density lipoprotein receptor (LDLR) gene was shown to cause familial hypercholesterolaemia (FH) in a large family from Northern Ireland. Twenty-four of 52 family members tested had this mutation, 13 of which were newly diagnosed. Mutation-positive individuals had significantly higher mean total-cholesterol (TC) and LDL-cholesterol (LDL-C) than those without 211delG. LDL-C was a more accurate indicator of disease status than TC, When TC levels alone were considered, in individuals over 16 years, a false negative rate (TC <7.5 mmol/l) of 40% was found; however, this fell to 13% based on inclusion of LDL-C levels. Individuals with coronary artery disease (CAD) had significantly higher TC levels than those without CAD and tended to have tendinous xanthomas (TX) and corneal arcus (CA). Genetic polymorphisms in the angiotensin converting enzyme (ACE) and apolipoprotein (ape) B genes did not appear to be associated with lipid levels or with the clinical severity of the disease; however, the apo E e4 allele did show a lipid-raising effect in individuals with the mutation.
Resumo:
PURPOSE: The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). METHODS: Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. RESULTS: Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. CONCLUSION: These results illustrate the internalization and intracellular trafficking by RVECs of insulin and LDL through highly efficient RME, and they provide evidence for at least two possible fates for the endocytosed ligands. This study outlines a route by which vital macromolecules may cross the inner blood-retinal barrier.
Resumo:
The worldwide epidemic of obesity is a major public health concern and is persuasively linked to the rising prevalence of diabetes and cardiovascular disease. Obesity is often associated with an abnormal lipoprotein profile, which may be partly negated by pioglitazone intervention, as this can influence the composition and oxidation characteristics of low-density lipoprotein (LDL). However, as pioglitazone's impact on these parameters within high-density lipoprotein (HDL), specifically HDL(2&3), is absent from the literature, this study was performed to address this shortcoming.
Resumo:
OBJECTIVE - To describe and compare the associations of serum lipoproteins and apolipoproteins with diabetic retinopathy. RESEARCH DESIGN AND METHODS - This was a cross-sectional study of 224 diabetic patients (85 type 1 and 139 type 2) froma diabetes clinic. Diabetic retinopathy was graded from fundus photographs according to the Airlie House Classification system and categorized into mild, moderate, and vision-threatening diabetic retinopathy (VTDR). Serum traditional lipids (total, LDL, non-HDL, and HDL cholesterol and triglycerides) and apolipoprotein AI (apoAI), apolipoprotein B (apoB), and the apoB-to-apoAI ratio were assessed. RESULTS - Diabetic retinopathy was present in 133 (59.4%) individuals. After adjustment for age, sex, diabetes duration, A1C, systolic blood pressure, and diabetes medications, the HDL cholesterol level was inversely associated with diabetic retinopathy (odds ratio 0.39 [95% CI 0.16-0.94], highest versus lowest quartile; P = 0.017). The ApoAI level was inversely associated with diabetic retinopathy (per SD increase, 0.76 [95% CI 0.59-0.98]), whereas apoB (per SD increase, 1.31 [1.02-1.68]) and the apoB-to-apoAI ratio (per SD increase, 1.48 [1.13-1.95]) were positively associated with diabetic retinopathy. Results were similar for mild to moderate diabetic retinopathy and VTDR. Traditional lipid levels improved the area under the receiver operating curve by 1.8%, whereas apolipoproteins improved the area by 8.2%. CONCLUSIONS - ApoAI and apoB and the apoB-to-apoAI ratio were significantly and independently associated with diabetic retinopathy and diabetic retinopathy severity and improved the ability to discriminate diabetic retinopathy by 8%. Serum apolipoprotein levels may therefore be stronger biomarkers of diabetic retinopathy than traditional lipid measures. © 2011 by the American Diabetes Association.
Resumo:
Russia has very high mortality from cardiovascular disease (CVD), with evidence that heavy drinking may play a role. To throw further light on this association we have studied the association of alcohol with predictors of CVD risk including B-type natriuretic peptide (BNP). Levels of BNP increase primarily in response to abnormal cardiac chamber wall stretch which can occur both as a result of atherosclerosis as well as due to other types of damage to the myocardium. No previous population-based studies have investigated the association with alcohol. We analysed cross-sectional data on drinking behaviour in 993 men aged 25-60 years from the Izhevsk Family Study 2 (IFS2), conducted in the Russian city of Izhevsk in 2008-2009. Relative to non-drinkers, men who drank hazardously had an odds ratio (OR) of being in the top 20 % of the BNP distribution of 4.66 (95 % CI 2.13, 10.19) adjusted for age, obesity, waist-hip ratio, and smoking. Further adjustment for class of hypertension resulted in only slight attenuation of the effect, suggesting that this effect was not secondary to the influence of alcohol on blood pressure. In contrast hazardous drinking was associated with markedly raised ApoA1 and HDL cholesterol levels, but had little impact on levels of ApoB and LDL cholesterol. Similar but less pronounced associations were found in the Belfast (UK) component of the PRIME study conducted in 1991. These findings suggest that the association of heavy drinking with increased risk of cardiovascular disease may be partly due to alcohol-induced non-atherosclerotic damage to the myocardium.
Resumo:
Dietary flavonoid intake, especially berry flavonoids, has been associated with reduced risks of cardiovascular disease (CVD) in large prospective cohorts. Few clinical studies have examined the effects of dietary berries on CVD risk factors. We examined the hypothesis that freeze-dried strawberries (FDS) improve lipid and lipoprotein profiles and lower biomarkers of inflammation and lipid oxidation in adults with abdominal adiposity and elevated serum lipids. In a randomized dose-response controlled trial, 60 volunteers [5 men and 55 women; aged 49 ± 10 y; BMI: 36 ± 5 kg/m2 (means ± SDs)] were assigned to consume 1 of the following 4 beverages for 12 wk: 1) low-dose FDS (LD-FDS; 25 g/d); 2) low-dose control (LD-C); 3) high-dose FDS (HD-FDS; 50 g/d); and 4) high-dose control (HD-C). Control beverages were matched for calories and total fiber. Blood draws, anthropometrics, blood pressure, and dietary data were collected at screening (0 wk) and after 12-wk intervention. Dose-response analyses revealed significantly greater decreases in serum total and LDL cholesterol and nuclear magnetic resonance (NMR)–derived small LDL particle concentration in HD-FDS [33 ± 6 mg/dL, 28 ± 7 mg/dL, and 301 ± 78 nmol/L, respectively (means ± SEMs)] vs. LD-FDS (−3 ± 11 mg/dL, −3 ± 9 mg/dL, and −28 ± 124 nmol/L, respectively) over 12 wk (0–12 wk; all P < 0.05). Compared with controls, only the decreases in total and LDL cholesterol in HD-FDS remained significant vs. HD-C (0.7 ± 12 and 1.4 ± 9 mg/dL, respectively) over 12 wk (0–12 wk; all P < 0.05). Both doses of strawberries showed a similar decrease in serum malondialdehyde at 12 wk (LD-FDS: 1.3 ± 0.2 μmol/L; HD-FDS: 1.2 ± 0.1 μmol/L) vs. controls (LD-C: 2.1 ± 0.2 μmol/L; HD-C: 2.3 ± 0.2 μmol/L) (P < 0.05). In general, strawberry intervention did not affect any measures of adiposity, blood pressure, glycemia, and serum concentrations of HDL cholesterol and triglycerides, C-reactive protein, and adhesion molecules. Thus, HD-FDS exerted greater effects in lowering serum total and LDL cholesterol and NMR-derived small LDL particles vs. LD-FDS in the 12-wk study. These findings warrant additional investigation in larger trials. This trial was registered at clinicaltrials.gov as NCT01883401.
Resumo:
Objective: To assess the seasonality of cardiovascular risk factors (CVRF) in a large set of population-based studies.
Methods: Cross-sectional data from 24 population-based studies from 15 countries, with a total sample size of 237 979 subjects. CVRFs included Body Mass Index (BMI) and waist circumference; systolic (SBP) and diastolic (DBP) blood pressure; total, high (HDL) and low (LDL) density lipoprotein cholesterol; triglycerides and glucose levels. Within each study, all data were adjusted for age, gender and current smoking. For blood pressure, lipids and glucose levels, further adjustments on BMI and drug treatment were performed.
Results: In the Northern and Southern Hemispheres, CVRFs levels tended to be higher in winter and lower in summer months. These patterns were observed for most studies. In the Northern Hemisphere, the estimated seasonal variations were 0.26 kg/m2 for BMI, 0.6 cm for waist circumference, 2.9 mm Hg for SBP, 1.4 mm Hg for DBP, 0.02 mmol/L for triglycerides, 0.10 mmol/L for total cholesterol, 0.01 mmol/L for HDL cholesterol, 0.11 mmol/L for LDL cholesterol, and 0.07 mmol/L for glycaemia. Similar results were obtained when the analysis was restricted to studies collecting fasting blood samples. Similar seasonal variations were found for most CVRFs in the Southern Hemisphere, with the exception of waist circumference, HDL, and LDL cholesterol.
Conclusions: CVRFs show a seasonal pattern characterised by higher levels in winter, and lower levels in summer. This pattern could contribute to the seasonality of CV mortality.
Resumo:
Dietary pattern (DP) analysis allows examination of the combined effects of nutrients and foods on the markers of CVD. Very few studies have examined these relationships during adolescence or young adulthood. Traditional CVD risk biomarkers were analysed in 12-15-year-olds (n 487; Young Hearts (YH)1) and again in the same individuals at 20-25 years of age (n 487; YH3). Based on 7 d diet histories, in the present study, DP analysis was performed using a posteriori principal component analysis for the YH3 cohort and the a priori Mediterranean Diet Score (MDS) was calculated for both YH1 and YH3 cohorts. In the a posteriori DP analysis, YH3 participants adhering most closely to the 'healthy' DP were found to have lower pulse wave velocity (PWV) and homocysteine concentrations, the 'sweet tooth' DP were found to have increased LDL concentrations, systolic blood pressure, and diastolic blood pressure and decreased HDL concentrations, the 'drinker/social' DP were found to have lower LDL and homocysteine concentrations, but exhibited a trend towards a higher TAG concentration, and finally the 'Western' DP were found to have elevated homocysteine and HDL concentrations. In the a priori dietary score analysis, YH3 participants adhering most closely to the Mediterranean diet were found to exhibit a trend towards a lower PWV. MDS did not track between YH1 and YH3, and nor was there a longitudinal relationship between the change in the MDS and the change in CVD risk biomarkers. In conclusion, cross-sectional analysis revealed that some associations between DP and CVD risk biomarkers were already evident in the young adult population, namely the association between the healthy DP (and the MDS) and PWV; however, no longitudinal associations were observed between these relatively short time periods.
Resumo:
In this study LC n-3 PUFA-specific effects on the degree of monocyte differentiation and macrophage foam cell formation were investigated by treating PMA-induced immature and mature macrophage models with LC n-3/n-6 PUFA during and post-differentiation. During immature macrophage differentiation LC n-3 PUFA alone decreased TNFα mRNA levels. EPA, and the n-6 PUFAs, linoleic acid and arachidonic acid, decreased CD36 mRNA levels, and EPA also downregulated CD49d cell-surface expression. Both LC n-3 PUFA reduced LDLr mRNA levels in immature macrophages, while DHA alone reduced levels in mature macrophages. Post-differentiation, n-3 and -6 PUFA reduced basal, but not oxidised LDL dependent cholesterol levels in immature macrophages. LC n-3 PUFA-specific reductions in LDLr and LOX-1 mRNA expression were also observed.
This study found LC n-3 PUFA specific, anti-atherogenic effects were more significant in immature macrophages. LC n-3 PUFA effects may be modulated by the extent of monocyte to macrophage differentiation.
Resumo:
Background Exercise training is considered an effective strategy to improve metabolic disease. Despite this, less is known regarding exercise training in the prevention and susceptibility of LDL subfraction oxidation, particularly in an aged population.
Methods Eleven aged (55 ± 4 yrs) and twelve young (21 ± 2 yrs) participants were randomly separated into an experimental or control group as follows: young exercise (n = 6); young control (n = 6); aged exercise (n = 6) and aged control (n = 5). The participants assigned to the exercise groups performed 12 weeks of moderate intensity (55–65% VO2max) exercise training. Venous blood was extracted at baseline, and 48 h following 12 weeks of exercise and assayed for a range of metabolites associated with lipid composition and lipoprotein susceptibility to oxidation.
Results Although there was no difference in the oxidation potential (time ½ max) of LDL I, II or III between groups at baseline (p > 0.05), there was an increase in time ½ max for LDL I following exercise within the aged exercise group (p < 0.05). Moreover, α-tocopherol concentration was selectively lower in the aged exercise group, compared to the young exercise at baseline. The lipid composition of LDL I, LDL II, LDL III, VLDL, HDL2, HDL3 and serum lipid hydroperoxides remained unchanged as a function of exercise training and ageing (p > 0.05).
Conclusion The primary finding of this study demonstrates that adaptations in LDL resistance to oxidation occur following 12 weeks of exercise training in the aged, and this may be of clinical significance, as oxidation of LDL has been implicated in atherosclerosis.
Resumo:
Background This study evaluated the effect of statins in Primary biliary cirrhosis (PBC) on endothelial function, anti-oxidant status and vascular compliance. Methods Primary biliary cirrhosis patients with hypercholesterolaemia were randomized to receive 20mg simvastatin or placebo in a single blind, randomized controlled trial. Body mass index, blood pressure, glucose, liver function, lipid profile, immunoglobulin levels, serological markers of endothelial function and anti-oxidant status were measured as well as vascular compliance, calculated from pulse wave analysis and velocity, at recruitment and again at 3, 6, 9 and 12months. Results Twenty-one PBC patients (F=20, mean age = 55) were randomized to simvastatin 20mg (n=11) or matched placebo (n=10). At completion of the trial, serum cholesterol levels in the simvastatin group were significantly lower compared with the placebo group (4.91mmol/L vs. 6.15mmol/L, P=0.01). Low-density lipoprotein (LDL) levels after 12months were also significantly lower in the simvastatin group (2.33mmol/L vs. 3.53mmol/L, P=0.01). After 12months of treatment, lipid hydroperoxides were lower (0.49mol/L vs. 0.59mol/L, P=0.10) while vitamin C levels were higher (80.54mol/L vs. 77.40mol/L, P=0.95) in the simvastatin group. Pulse wave velocity remained similar between treatment groups at 12months (8.45m/s vs. 8.80m/s, P=0.66). Only one patient discontinued medication owing to side effects. No deterioration in liver transaminases was noted in the simvastatin group. Conclusions Statin therapy in patients with PBC appears safe and effective towards overall reductions in total cholesterol and LDL levels. Our initial study suggests that simvastatin may also confer advantageous effects on endothelial function and antioxidant status.
Resumo:
BACKGROUND: Dietary cocoa is an important source of flavonoids and is associated with favorable cardiovascular disease effects, such as improvements in vascular function and lipid profiles, in nondiabetic adults. Type 2 diabetes (T2D) is associated with adverse effects on postprandial serum glucose, lipids, inflammation, and vascular function.
OBJECTIVE: We examined the hypothesis that cocoa reduces metabolic stress in obese T2D adults after a high-fat fast-food-style meal.
METHODS: Adults with T2D [n = 18; age (means ± SEs): 56 ± 3 y; BMI (in kg/m(2)): 35.3 ± 2.0; 14 women; 4 men) were randomly assigned to receive cocoa beverage (960 mg total polyphenols; 480 mg flavanols) or flavanol-free placebo (110 mg total polyphenols; <0.1 mg flavanols) with a high-fat fast-food-style breakfast [766 kcal, 50 g fat (59% energy)] in a crossover trial. After an overnight fast (10-12 h), participants consumed the breakfast with cocoa or placebo, and blood sample collection [glucose, insulin, lipids, and high-sensitivity C-reactive protein (hsCRP)] and vascular measurements were conducted at 0.5, 1, 2, 4, and 6 h postprandially on each study day. Insulin resistance was evaluated by homeostasis model assessment.
RESULTS: Over the 6-h study, and specifically at 1 and 4 h, cocoa increased HDL cholesterol vs. placebo (overall Δ: 1.5 ± 0.8 mg/dL; P ≤ 0.01) but had no effect on total and LDL cholesterol, triglycerides, glucose, and hsCRP. Cocoa increased serum insulin concentrations overall (Δ: 5.2 ± 3.2 mU/L; P < 0.05) and specifically at 4 h but had no overall effects on insulin resistance (except at 4 h, P < 0.05), systolic or diastolic blood pressure, or small artery elasticity. However, large artery elasticity was overall lower after cocoa vs. placebo (Δ: -1.6 ± 0.7 mL/mm Hg; P < 0.05), with the difference significant only at 2 h.
CONCLUSION: Acute cocoa supplementation showed no clear overall benefit in T2D patients after a high-fat fast-food-style meal challenge. Although HDL cholesterol and insulin remained higher throughout the 6-h postprandial period, an overall decrease in large artery elasticity was found after cocoa consumption. This trial was registered at clinicaltrials.gov as NCT01886989.