183 resultados para James Bond tema musik förändring analys 007
Resumo:
James Croll (1821–90) occupies a prominent position in the history of physical geology, and his pioneering work on the causes of long-term climate change has been widely discussed. During his life he benefited from the patronage of leading men of science; his participation in scientific debates was widely acknowledged, not least through his election as a Fellow of the Royal Society in 1876. For all that, the intellectual contribution that Croll himself considered to be of most significance—his articles and two books on metaphysics—has attracted very little attention. In addressing this neglect, it is argued here that Croll's interest in metaphysics, grounded in his commitment to a Calvinist form of Christianity, was central to his life and thought. Examining together Croll's geophysical and metaphysical writings offers a different and fruitful way of understanding his scientific career and points to the wider significance of metaphysics in late-Victorian scientific culture.
Resumo:
Hydrogenation of tertiary amides, in particular, N-methylpyrrolidin-2-one, can be efficiently facilitated by a TiO(2)-supported bimetallic Pt/Re catalyst at low temperatures and pressures. Characterisation of the catalysts and kinetic tests have shown that the close interaction between the Re and Pt is crucial to the high activity observed. DFT calculations were used to examine a range of metal combinations and show that the role of the uncoordinated Re is to activate the C=O and that of the Pt is as a hydrogenation catalyst, removing intermediates from the catalyst surface. The rate enhancement observed on the TiO(2) support is thought to be due to the presence of oxygen vacancies allowing adsorption and weakening of the C=O bond. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A series of bis(oxazoline) metal(II) complexes has been supported on silica and carbon supports by non-covalent immobilisation using an ionic liquid. The catalytic performance of these solids was compared for the enantioselective Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene and the Mukaiyama-aldol reaction between methyl pyruvate and 1-methoxy-1-trimethylsilyloxy-propene. In both reactions the enantioselectivity was strongly influenced by the choice of support displaying enantioselectivies (ee values) up to 40% higher than those conducted under homogeneous reaction conditions.
Resumo:
The title compound is readily prepared from 5'-O-monomethoxytrityl-3'-thiothymidine (5); cleavage of the P–S bond can be accomplished by mild oxidative hydrolysis.
Resumo:
Phosphonates constitute a class of natural products that mimic the properties of the more common organophosphate ester metabolite yet are not readily degraded owing to the direct linkage of the phosphorus atom to the carbon atom. Phosphonate hydrolases have evolved to allow bacteria to utilize environmental phosphonates as a source of carbon and phosphorus. The work reported in this paper examines one such enzyme, phosphonoacetate hydrolase. By using a bioinformatic approach, we circumscribed the biological range of phosphonoacetate hydrolase to a select group of bacterial species from different classes of Proteobacteria. In addition, using gene context, we identified a novel 2-aminoethylphosphonate degradation pathway in which phosphonoacetate hydrolase is a participant. The X-ray structure of phosphonoformate-bound phosphonoacetate hydrolase was determined to reveal that this enzyme is most closely related to nucleotide pyrophosphatase/diesterase, a promiscuous two-zinc ion metalloenzyme of the alkaline phosphatase enzyme superfamily. The X-ray structure and metal ion specificity tests showed that phosphonoacetate hydrolase is also a two-zinc ion metalloenzyme. By using site-directed mutagenesis and P-32-labeling strategies, the catalytic nucleophile was shown to be Thr64. A structure-guided, site-directed mutation-based inquiry of the catalytic contributions of active site residues identified Lys126 and Lys128 as the most likely candidates for stabilization of the aci-carboxylate dianion leaving group. A catalytic mechanism is proposed which combines Lys12/Lys128 leaving group stabilization with zinc ion activation of the Thr64 nucleophile and the substrate phosphoryl group.
Resumo:
This paper tests empirically whether pension information derived by corporate pension accounting disclosures is priced in corporate bond spreads. The model represents a hybrid of more traditional accounting ratio-based models of credit risk and structural models of bond spreads initiated by Merton (1974). The model is fitted to 5 years of data from 2002 to 2006 featuring companies from the US and Europe. The paper finds that while unfunded pension liabilities are priced in the overall sample, they are not priced as aggressively as traditional leverage. Furthermore, an extended model shows that the pension–credit risk relation is most evident in the US and Germany, where unfunded pension liabilities are priced more aggressively than traditional forms of leverage. No pension–credit risk relation is found in the other countries sampled, notably the UK, Netherlands and France.
Resumo:
A novel, inducible, carbon-phosphorus bond-cleavage enzyme, phosphonoacetate hydrolase, was purified from cells of Pseudomonas fluorescens 23F grown phosphonoacetate. The native enzyme had a molecular mass of approximately 80 kDa and, upon SDS/PAGE, yielded a homogenous protein band with an apparent molecular mass of about 38 kDa. Activity of purified phosphonoacetate hydrolase was Zn2+ dependent and showed pH and temperature optima of approximately 7.8 and 37 degrees C, respectively. The purified enzyme had an apparent K-m of 1.25 mM for its sole substrate phosphonoacetate, and was inhibited by the structural analogues 3-phosphonopropionate and phosphonoformate. The NH2-terminal sequence of the first 19 amino acids displayed no significant similarity to other databank sequences.