173 resultados para Industrial and Manufacturing Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The studies on PKMs have attracted a great attention to robotics community. By deploying a parallel kinematic structure, a parallel kinematic machine (PKM) is expected to possess the advantages of heavier working load, higher speed, and higher precision. Hundreds of new PKMs have been proposed. However, due to the considerable gaps between the desired and actual performances, the majorities of the developed PKMs were the prototypes in research laboratories and only a few of them have been practically applied for various applications; among the successful PKMs, the Exechon machine tool is recently developed. The Exechon adopts unique over-constrained structure, and it has been improved based on the success of the Tricept parallel kinematic machine. Note that the quantifiable theoretical studies have yet been conducted to validate its superior performances, and its kinematic model is not publically available. In this paper, the kinematic characteristics of this new machine tool is investigated, the concise models of forward and inverse kinematics have been developed. These models can be used to evaluate the performances of an existing Exechon machine tool and to optimize new structures of an Exechon machine to accomplish some specific tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural Bulgarian clinoptilolite from the south-eastern Rhodopes mountain was modified through treatment with hydrochloric acid with various normality, both single and repeatedly, as well as through a charring of a preliminary obtained NH4-form. The parameters concerning the uptake of the ion-exchangeable cations (Ca2+, Na+ and K+), as well as the uptake of aluminium from the natural material were calculated on the basis of the chemical contents. The highest extent of cations removal was attained in the case of the treatment with NH4Cl solution, while the highest aluminium deficiency was established in the samples treated by hydrochloric acid solutions with increasing concentration. Sulfur dioxide adsorption on the obtained decationised and dealuminised samples was studied according to the frontal-dynamic method. The parameters of the breakthrough curves, namely breakthrough time, saturation time and some of the statistical moments of the curve distribution, were determined. The dynamic adsorption capacities were also specified. Comparing the momentum values it was established that as a result of the natural zeolite treatment with NH4Cl and with low concentrated acid, the diffusion resistance decreases because of the dominant exchange of the presenting exchangeable cations in the samples with the smaller size protons and because of enlargement of the pores opening. Intensified dealuminisation was observed when more concentrated acid solutions are used. The capacity is enhanced, probably due to an increase in the total pore volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To utilize the advantages of existing and emerging Internet techniques and to meet the demands for a new generation of collaborative working environments, a framework with an upperware–middleware architecture is proposed, which consists of four layers: resource layer, middleware layer, upperware layer and application layer. The upperware contains intelligent agents and plug/play facilities; the former coordinates and controls multiple middleware techniques such as Grid computing, Web-services and mobile agents, while the latter are used for the applications, such as semantic CAD, to plug and loose couple into the system. The method of migrating legacy software using automatic wrapper generation technique is also presented. A prototype mobile environment for collaborative product design is presented to illustrate the utilization of the CWE framework in collaborative design and manufacture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over twenty years ago ‘Our Common Future’ presented a conceptualization and explanation of the concept of sustainable development. Since then numerous alternative definitions of the concept have been offered, of which at least some are exclusive to each other. At the same time, the role of business in the transition to sustainable development has increasingly received attention. Bringing these two trends in sustainable development together, this paper returns to the Brundtland version of the concept to examine to what extent the original principles of sustainable development are still embedded within key business guidelines, namely the UN Global Compact, the OECD Guidelines for Multinational Enterprises, the ICC Business Charter for Sustainable Development, the CAUX Principles, the Global Sullivan Principles and the CERES Principles. The findings suggest that these business guidelines tend to emphasize environmental rather than social aspects of sustainable development, in particular to the detriment of the original Brundtland prioritization of the needs of the poorest. Furthermore, the attention to environmental aspects stresses win-win situations and has a clear managerialist focus; whereas more conceptual environmental issues concerning systems interdependencies, critical thresholds or systemic limits to growth find little attention. The normative codes and principles targeted at the private sector thus not only add another voice to the multiple discourses on sustainable development but also contribute to a reinterpretation of the original agenda set by Brundtland towards conceptualizations of sustainable development around the needs of industrialised rather than developing countries. Copyright © 2011 John Wiley & Sons, Ltd and ERP Environment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently polymeric adsorbents have been emerging as highly effective alternatives to activated carbons for pollutant removal from industrial effluents. Poly(methyl methacrylate) (PMMA), polymerized using the atom transfer radical polymerization (ATRP) technique has been investigated for its feasibility to remove phenol from aqueous solution. Adsorption equilibrium and kinetic investigations were undertaken to evaluate the effect of contact time, initial concentration (10-90 mg/L), and temperature (25-55 degrees C). Phenol uptake was found to increase with increase in initial concentration and agitation time. The adsorption kinetics were found to follow the pseudo-second-order kinetic model. The intra-particle diffusion analysis indicated that film diffusion may be the rate controlling step in the removal process. Experimental equilibrium data were fitted to five different isotherm models namely Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Redlich-Peterson by non-linear least square regression and their goodness-of-fit evaluated in terms of mean relative error (MRE) and standard error of estimate (SEE). The adsorption equilibrium data were best represented by Freundlich and Redlich-Peterson isotherms. Thermodynamic parameters such as Delta G degrees and Delta H degrees indicated that the sorption process is exothermic and spontaneous in nature and that higher ambient temperature results in more favourable adsorption. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Workspace analysis and optimization are important in a manipulator design. As the complete workspace of a 6-DOF manipulator is embedded into a 6-imensional space, it is difficult to quantify and qualify it. Most literatures only considered the 3-D sub workspaces of the complete 6-D workspace. In this paper, a finite-partition approach of the Special Euclidean group SE(3) is proposed based on the topology properties of SE(3), which is the product of Special Orthogonal group SO(3) and R^3. It is known that the SO(3) is homeomorphic to a solid ball D^3 with antipodal points identified while the geometry of R^3 can be regarded as a cuboid. The complete 6-D workspace SE(3) is at the first time parametrically and proportionally partitioned into a number of elements with uniform convergence based on its geometry. As a result, a basis volume element of SE(3) is formed by the product of a basis volume element of R^3 and a basis volume element of SO(3), which is the product of a basis volume element of D^3 and its associated integration measure. By this way, the integration of the complete 6-D workspace volume becomes the simple summation of the basis volume elements of SE(3). Two new global performance indices, i.e., workspace volume ratio Wr and global condition index GCI, are defined over the complete 6-D workspace. A newly proposed 3 RPPS parallel manipulator is optimized based on this finite-partition approach. As a result, the optimal dimensions for maximal workspace are obtained, and the optimal performance points in the workspace are identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear principal component analysis (PCA) based on neural networks has drawn significant attention as a monitoring tool for complex nonlinear processes, but there remains a difficulty with determining the optimal network topology. This paper exploits the advantages of the Fast Recursive Algorithm, where the number of nodes, the location of centres, and the weights between the hidden layer and the output layer can be identified simultaneously for the radial basis function (RBF) networks. The topology problem for the nonlinear PCA based on neural networks can thus be solved. Another problem with nonlinear PCA is that the derived nonlinear scores may not be statistically independent or follow a simple parametric distribution. This hinders its applications in process monitoring since the simplicity of applying predetermined probability distribution functions is lost. This paper proposes the use of a support vector data description and shows that transforming the nonlinear principal components into a feature space allows a simple statistical inference. Results from both simulated and industrial data confirm the efficacy of the proposed method for solving nonlinear principal component problems, compared with linear PCA and kernel PCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer extrusion is one of the major methods of processing polymer materials and advanced process monitoring is important to ensure good product quality. However, commonly used process monitoring devices, e.g. temperature and pressure sensors, are limited in providing information on process dynamics inside an extruder barrel. Screw load torque dynamics, which may occur due to changes in solids conveying, melting, mixing, melt conveying, etc., are believed to be a useful indicator of process fluctuations inside the extruder barrel. However, practical measurement of the screw load torque is difficult to achieve. In this work, inferential monitoring of the screw load torque signal in an extruder was shown to be possible by monitoring the motor current (armature and/or field) and simulation studies were used to check the accuracy of the proposed method. The ability of this signal to aid identification and diagnosis of process issues was explored through an experimental investigation. Power spectral density and wavelet frequency analysis were implemented together with a covariance analysis. It was shown that the torque signal is dominated by the solid friction in the extruder and hence it did not correlate well with melting fluctuations. However, it is useful for online identification of solids conveying issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When simulating the High Pressure Die Casting ‘HPDC’ process, the heat transfer coefficient ‘HTC’ between the casting and the die is critical to accurately predict the quality of the casting. To determine the HTC at the metal–die interface a production die for an automotive engine bearing beam, Die 1, was instrumented with type K thermocouples. A Magmasoft® simulation model was generated with virtual thermocouple points placed in the same location as the production die. The temperature traces from the simulation model were compared to the instrumentation results. Using the default simulation HTC for the metal–die interface, a poor correlation was seen, with the temperature response being much less for the simulation model. Because of this, the HTC at the metal–die interface was modified in order to get a better fit. After many simulation iterations, a good fit was established using a peak HTC of 42,000 W/m2 K, this modified HTC was further validated by a second instrumented production die, proving that the modified HTC gives good correlation to the instrumentation trials. The updated HTC properties for the simulation model will improve the predictive capabilities of the casting simulation software and better predict casting defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Joule heat-induced hot-spot formation sets severe limits in the operation of continuous annular electrochromatography (CAEC), a new concept for preparative separation as an analog to analytical capillary electrochromatography (CEC). This may lead to eluent flow perturbance, even to boiling, which would massively weaken separation efficiency and may even hamper the stationary phase used for separation. For reasons of system integration and high-efficiency heat transfer, micro flow heat exchangers are considered with a separate coolant flow. A 3D numerical analysis of the heat transfer of water single-phase laminar flow in a square microchannel and different arrays of micro pin-fins was carried out using COMSOL Multiphysics. Several advanced materials with low electric conductivity and at the same time with high heat conductivity were put forward to be used in the CAEC system. As essential design point, it is proposed to constitute the micro heat exchanger from two different parts of the CAEC system, namely a microstructured pin-fins plate and a so-called conductive plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An interdigital mixer - redispersion capillary assembly was applied to prevent the liquid-liquid bubbly flow coalescence in microreactors. The redispersion capillary consisted of 1 mm long and 0.25 mm inner-diameter constrictions placed every 0.50 m along the channel length. The system was tested on the phase transfer catalyzed esterification to produce benzyl benzoate. The application of constrictions to prevent coalescence resulted in a better reproducibility compared to a capillary without the constrictions. By controlling the total flow rate and the aqueous-to-organic ratio the bubbly flow surface-volume ratio could be increased up to 230 700 m(2)m(-3). Compared to the conventional phase transfer catalyzed esterification, the continuous operation in the interdigital-redispersion capillary assembly eliminated the use of solvents and bases, removing an energy intensive step of distillation, while increasing process safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near-infrared diffuse tomography was used in order to observe dynamic behaviour of flowing gases by measuring the 3D distributions of composition and temperature in a weakly scattering packed bed reactor, subject to wall effects and non-isothermal conditions. The technique was applied to the vapour phase hydrogen isotopic exchange reaction in a hydrophobic packing of low aspect ratio made of platinum on styrene divinyl benzene sulphonate copolymer resin. The results of tomography revealed uneven temperature and composition maps of water and deuterated water vapours in the core-packed bed and in the vicinity of the wall owing to flow maldistribution. The dynamic lag between the near-wall water vapour and deuterated water vapour compositions were observed suggesting that the convective transfer which was significant near the wall at the start, owing to high porosity, was also effective at large conversions.