251 resultados para Impulsive Differential Inclusion
Resumo:
The topography of the tegument of Echinostoma caproni adults collected from high (mice) and low (rats) compatible hosts was compared by SEM. In the oral (OS) and the ventral sucker (VS) areas, a worm age-host species interaction was found with regard to the density of spines. There was a decrease in the density of spines in the adults collected from mice, whereas an increase occurred in the OS area in worms from rats over time. The tegumentary spines in adults from mice became larger and blunter. Some spines from the VS area in adults from mice at 4 wpi were multipointed. The spines of adults from rats were sharper, not covered by the tegument and no multipointed spines were observed. We detected a greater level of actin gene expression in the adults collected from rats. These facts suggest that the low compatible host induces an increased turnover of tegumentary spines. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Cannibalism and intraguild predation (IGP) are common amongst freshwater amphipod crustacean aswsemblages, particularly between individuals of different body size, with IGP of smaller by larger species. The decline of Gammarus tigrinus Populations in mainland Europe has been accompanied by the arrival of the Ponto-Caspian invader Dikerogammarus villosus and previous studies have implicated IGP of G. tigrinus by the larger D. villosus as the principal driving force in this replacement. We examined how factors such as microhabitat and body size may mediate both cannibalism within G. tigrinus populations and IGP by D. villosus and thus contribute to field patterns of coexistence and exclusion. A field Survey of an invaded Dutch fake indicated that G. tigrinus and D. villosus differed in distribution. with D. villosus being the numerically dominant amphipod (80-96 %) on the rocky boulder Substrate of the shoreline and G. tigrinus being the dominant amphipod (100 %) in the crushed shell/sand matrix immediately adjacent to this. Laboratory microcosm experiments indicated that G. tigrinus cannibalism, particularly of smaller by larger size classes, may be common. In addition, although D. villosus predation of all G. tigrinus size classes was extreme, the smallest size classes Suffered the highest predation. Indeed, when exposed to D. villosus, predation of larger G. tigrinus was lowest when smaller G. tigrinus were also present. Increasing microhabitat complexity from a simple bare substrate littered with Dreissena polymorpha zebra mussels to a Crushed shell/sand matrix significantly reduced both cannibalism and IGP. Our Study emphasizes the need to consider both life history stages and habitat template, when considering the impacts of biotic interactions and it also emphasizes that complex, interacting factors may be mediating the range expansion of D. villosus.
Resumo:
Invading and native species often interact directly, such as by predation, producing patterns of exclusion and coexistence. Less direct factors, such as interactions with the broader abiotic and biotic environment, may also contribute to such patterns, but these have received less recognition. In Northern Ireland, the North American Gammarus tigrinus has invaded freshwaters populated with the native Gammarus duebeni celticus, with intraguild predation between the two implicated in their relative success. However, these species also engage in day and night
Resumo:
We used field surveys and transplant experiments to elucidate the relative roles of physico-chemical regime and intraguild predation in determining the generally mutually exclusive distributions of native and invader freshwater amphipod species. Field surveys showed that the native Gammarus duebeni celticus dominates the shoreline of Lough Neagh, N. Ireland, with some co-occurrence with the N. American invader G. tigrinus. However, the latter species dominates the deeper areas of the mid-Lough. Transplant experiments showed no difference in survival of the native and invader in single species 'bioassay tubes' placed along the shoreline. However, there was significantly higher survival of the invader compared with the native in single species tubes placed in the mid-Lough. In mixed species tubes on the shoreline, the native killed and ate the invader, with no reciprocal interaction, leading to significant reductions of the invader. However, the invader had significantly higher survival than the native in mixed species tubes in the mid-Lough, with no evidence. of predation between the two species. These results indicate that, whereas differential intraguild predation may determine domination of the shoreline by the native, differential physico-chemical tolerances may be major determinants of the domination of the mid-Lough by the invader. This study emphasises the need to consider the habitat template in conjunction with biotic interactions before attempting to draw conclusions about mechanisms determining relative distribution patterns of native and invasive species.
Resumo:
Physico-chemical regimes of river systems are major determinants of the distributions and relative abundances of macroinvertebrate taxa. Other factors, however, such as biotic interactions, may co-vary with changes in physico-chemistry and concomitant changes in community composition. Thus, direct cause and effect relationships may not always be established from field surveys. Equally, however, laboratory studies may suffer from lack of realism in extrapolation to the field. Here, we use balanced field transplantation experiments to elucidate the role of physico-chemical regime in determining the generally mutually exclusive distributions of two amphipod taxa, Gammarus (two species) and Crangonyx pseudogracilis. Within two river systems in Ireland, the former species dominate stretches of well oxygenated, high-quality water, whereas the latter dominates stretches of poorly oxygenated, low-quality water. G. pulex and G. duebeni celticus did not survive in bioassay tubes in areas dominated by C. pseudogracilis, which itself survived in tubes in such areas. However, both C. pseudogracilis and Gammarus spp. survived equally well in tubes in areas dominated by Gammarus spp. Physicochemical regime thus limits the movement of Gammarus spp. into C. pseudogracilis areas, but some other factor excludes C. pseudogracilis from Gammarus spp. areas. Since previous laboratory experiments showed high predation rates of Gammarus spp. on C. pseudogracilis, we propose that predation by the former causes exclusion of the latter. Hence, presumed effects of physico-chemical regime on macroinvertebrate presence/abundance may often require experimental field testing and appreciation of alternative explanations.