125 resultados para INSITU COMPOSITES
Resumo:
Pre-consolidated carbon fibre-reinforced polyphenylene sulphide (CF/PPS) laminates were
thermoformed into V-shaped parts via designed out of autoclave thermoforming experiments.
The different processing conditions tested in the experiment have resulted in final
part angles whose differences ranged from 2.087 to 3.431 from the original mould angle.
The test results show that processing conditions influenced finished part dimensions as the
final sample angles were found to decrease relative to the tooling dimensions, as mould
temperature increases. Higher mould temperature conditions produce thinner parts due
to the thermal expansion of mould tools. The mould temperature of 170C, which can
produce parts with high degree of crystallinity as well as small size of crystal, has been
established as the optimal thermoforming condition for CF/PPS composites.
Modelling crack propagation in particle-reinforced composites using the element-free Galerkin method
Resumo:
Despite the increased applications of the composite materials in aerospace due to their exceptional physical and mechanical properties, the machining of composites remains a challenge. Fibre reinforced laminated composites are prone to different damages during machining process such as delamination, fibre pull-out, microcracks, thermal damages. Optimization of the drilling process parameters can reduces the probability of these damages. In the current research, a 3D finite element (FE) model is developed of the process of drilling in the carbon fibre reinforced composite (CFC). The FE model is used to investigate the effects of cutting speed and feed rate on thrust force, torque and delamination in the drilling of carbon fiber reinforced laminated composite. A mesoscale FE model taking into account of the different oriented plies and interfaces has been proposed to predict different damage modes in the plies and delamination. For validation purposes, experimental drilling tests have been performed and compared to the results of the finite element analysis. Using Matlab a digital image analysis code has been developed to assess the delamination factor produced in CFC as a result of drilling. © Springer Science+Business Media B.V. 2011.
Resumo:
Drilling is a major process in the manufacturing of holes required for the assemblies of composite laminates in aerospace industry. Simulation of drilling process is an effective method in optimizing the drill geometry and process parameters in order to improve hole quality and to reduce the drill wear. In this research we have developed three-dimensional (3D) FE model for drilling CFRP. A 3D progressive intra-laminar failure model based on the Hashin's theory is considered. Also an inter-laminar delamination model which includes the onset and growth of delamination by using cohesive contact zone is developed. The developed model with inclusion of the improved delamination model and real drill geometry is used to make comparison between the step drill of different stage ratio and twist drill. Thrust force, torque and work piece stress distributions are estimated to decrease by the use of step drill with high stage ratio. The model indicates that delamination and other workpiece defects could be controlled by selection of suitable step drill geometry. Hence the 3D model could be used as a design tool for drill geometry for minimization of delamination in CFRP drilling. © 2013 Elsevier Ltd.
Resumo:
Fibre-Reinforced Plastics (FRPs) have been used in civil aerospace vehicles for decades. The current state-of-the-art in airframe design and manufacture results in approximately half the airframe mass attributable to FRP materials. The continual increase in the use of FRP materials over metallic alloys is attributable to the material's superior specific strength and stiffness, fatigue performance and corrosion resistance. However, the full potential of these materials has yet to be exploited as analysis methods to predict physical failure with equal accuracy and robustness are not yet available. The result is a conservative approach to design, but one that can bring benefit via increased inspection intervals and reduced cost over the vehicle life. The challenge is that the methods used in practice are based on empirical tests and real relationships and drivers are difficult to see in this complex process and so the trade-off decision is challenging and uncertain. The aim of this feasibility study was to scope a viable process which could help develop some rules and relationships based on the fundamental mechanics of composite material and the economics of production and operation, which would enhance understanding of the role and impact of design allowables across the life of a composite structure.
Resumo:
Micro-mechanical analysis of polymeric composites provides a powerful means for the quantitative assessment of their bulk behavior. In this paper we describe a robust finite element model (FEM) for the micro-structural modeling of the behavior of particulate filled polymer composites under external loads. The developed model is applied to simulate stress distribution in polymer composites containing particulate fillers. Quantitative information about the magnitude and location of maximum stress concentrations obtained from these simulations is used to predict the dominant failure and crack growth mechanisms in these composites. The model predictions are compared with the available experimental data and also with the values found using other methods reported in the literature. These comparisons show the range of the validity of the developed model and its predictive potential.
Resumo:
The influence of the layered silicate clay platelets on the nitrogen permeation properties of hydrogenated nitrile butadiene rubber (HNBR)/nanoclay nanocomposites has been investigated. Nanocomposites of HNBR modified with different percentages of the organoclay are processed through various routes. Commercially available organoclay (CLOISITE 15A) and various silane-coupling agents are used to improve the dispersion of the nanoclay in HNBR. A total of 10 different formulations of nanocomposites are manufactured. The addition of the organoclay has resulted in a significant enhancement of the nitrogen barrier properties of the manufactured nanocomposite. The mechanism of the reduction in the permeability is explained through the changes in the morphology and its bond to the filler. These changes are confirmed through examination of the morphology using x-ray diffraction, transmission electron microscope, and dynamic mechanical thermal analysis. There has been a drastic reduction up to 55.7% in nitrogen permeability. The reduction in gas permeation in HNBR is attributed to uniformly exfoliated clay platelets. Finally, three different permeability models, namely, the Nielsen model, modified Nielsen model, and Cussler model, have also been considered to predict the permeability behavior of nanocomposites with different volume filler fractions. The experimental values of gas permeability have been compared with theoretical models. It is observed that the modified Nielsen model closely matches with the measured permeation behavior. © 2011 Wiley Periodicals, Inc.
Resumo:
A finite element model is developed to predict the stress-strain behaviour of particulate composites with fully unbonded filler particles. This condition can occur because of the lack of adhesion property of the filler surface. Whilst part of the filler particle is separated from the matrix, another section of filler keeps in contact with the matrix because of the lateral compressive displacement of the matrix. The slip boundary condition is imposed on the section of the interface that remains closed. The states of stress and displacement fields are obtained. The location of any further deformation through crazing or shear band formation is identified. A completely unbonded inclusion with partial slip at a section of the interface reduces the concentration of the stress at the interface significantly. Whereas this might lead to slightly higher strength, it decreases the load transfer efficiency and stiffness of this type of composite.