177 resultados para INDEPENDENT WALKING
Resumo:
We present SuperWASP observations of HAT-P-14b, a hot Jupiter discovered by Torres et al. The planet was found independently by the SuperWASP team and named WASP-27b after follow-up observations had secured the discovery, but prior to the publication by Torres et al. Our analysis of HAT-P-14/WASP-27 is in good agreement with the values found by Torres et al. and we provide additional evidence against astronomical false positives. Due to the brightness of the host star, V-mag = 10, HAT-P-14b is an attractive candidate for further characterization observations. The planet has a high impact parameter and the primary transit is close to grazing. This could readily reveal small deviations in the orbital parameters indicating the presence of a third body in the system, which may be causing the small but significant orbital eccentricity. Our results suggest that the planet may undergo a grazing secondary eclipse. However, even a non-detection would tightly constrain the system parameters.
Resumo:
From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 M planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G-type or early K-type and likely has a metallicity greater than solar ([Fe/H]=0.14±0.11). The planet's mass and radius are typical of the known hot Jupiters, thus adding another system to the apparent pileup of transiting planets with periods near 3-4 days. Our parameters match those of the recent HATnet announcement of the same planet, thus giving confidence in the techniques used. We report a possible indication of stellar activity in the host star.
Resumo:
We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star of 1.75 R sun in the Northern hemisphere, and the independent discovery of HAT-P-30b/WASP-51b, a new planet in the Northern hemisphere. Using WASP, RISE, Faulkes Telescope South, and TRAPPIST photometry, with CORALIE, SOPHIE, and NOT spectroscopy, we determine that WASP-35b has a mass of 0.72 ± 0.06 MJ and radius of 1.32 ± 0.05RJ , and orbits with a period of 3.16 days, WASP-48b has a mass of 0.98 ± 0.09 MJ , radius of 1.67 ± 0.10 RJ , and orbits in 2.14 days, while HAT-P-30b/WASP-51b, with an orbital period of 2.81 days, is found to have a mass of 0.76 ± 0.05 MJ and radius of 1.42 ± 0.03 RJ , agreeing with values of 0.71 ± 0.03 MJ and 1.34 ± 0.07 RJ reported for HAT-P-30b.
Resumo:
Accepted for publication - will appear in advance view JEL and hard copy publication in (2012) Vol 24(2).
Resumo:
The erythroleukaemic cell line TF-1, infected with either the pBabe neo retrovirus or the retrovirus bearing the human erythropoietin (hEpo) gene, developed three growth factor-independent clones. Erythropoietin (Epo), interleukin-3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) accelerated the proliferation of these clones. Autonomous growth of the clones was independent of Epo because it was not altered by Epo anti-sense oligonucleotides, nor was Epo detectable in culture supernatants. Cells from the mutant clones could not be induced by Epo to express glycophorin A and haemoglobin synthesis was markedly reduced. Haemin reversed the block in Epo-induced haemoglobin synthesis. Acquisition of growth factor-independence appears to be linked with the selective loss of differentiation capacity. These cells may provide a useful model for the study of the mechanisms involved in leukaemic transformation.
Resumo:
WaaL is a membrane enzyme that catalyzes a key step in lipopolysaccharide (LPS) synthesis: the glycosidic bonding of a sugar at the proximal end of the undecaprenyl-diphosphate (Und-PP) O-antigen with a terminal sugar of the lipid A-core oligosaccharide (OS). Utilizing an in vitro assay, we demonstrate here that ligation with purified Escherichia coli WaaL occurs without adenosine-5'-triphosphate (ATP) and magnesium ions. Furthermore, E. coli and Pseudomonas aeruginosa WaaL proteins cannot catalyze ATP hydrolysis in vitro. We also show that a lysine substitution of the arginine (Arg)-215 residue renders an active protein, whereas WaaL mutants with alanine replacements in the periplasmic-exposed residues Arg-215, Arg-288 and histidine (His)-338 and also the membrane-embedded aspartic acid-389 are nonfunctional. An in silico approach, combining predicted topological information with the analysis of sequence conservation, confirms the importance of a positive charge at the small periplasmic loop of WaaL, since an Arg corresponding to Arg-215 was found at a similar position in all the WaaL homologs. Also, a universally conserved H[NSQ]X(9)GXX[GTY] motif spanning the C-terminal end of the predicted large periplasmic loop and the membrane boundary of the transmembrane helix was identified. The His residue in this motif corresponds to His-338. A survey of LPS structures in which the linkage between O-antigen and lipid A-core OS was elucidated reveals that it is always in the beta-configuration, whereas the sugars bound to Und-PP are in the alpha-configuration. Together, our biochemical and in silico data argue that WaaL proteins use a common reaction mechanism and share features of metal ion-independent inverting glycosyltransferases.
Resumo:
The cystic fibrosis transmembrane conductance regulator (CFTR) has been proposed as an epithelial cell receptor for the entry of Salmonella Typhi but not Salmonella Typhimurium. The bacterial ligand recognized by CM is thought to reside either in the S. Typhi lipopolysaccharide core region or in the type IV pili. Here, we assessed the ability of virulent strains of S. Typhi and S. Typhimurium to adhere to and invade BHK epithelial cells expressing either the wild-type CFTR protein or the Delta F508 CFTR mutant. Both S. Typhi and S. Typhimurium invaded the epithelial cells in a CFTR-independent fashion. Furthermore and also in a CFTR-independent manner, a S. Typhi pilS mutant adhered normally to BHK cells but displayed a 50% reduction in invasion as compared to wild-type bacteria. Immunofluorescence microscopy revealed that bacteria and CFTR do not colocalize at the epithelial cell surface. Together, our results strongly argue against the established dogma that CFTR is a receptor for entry of Salmonella to epithelial cells. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The environmental bacterium Burkholderia cenocepacia causes opportunistic lung infections in immunocompromised individuals, particularly in patients with cystic fibrosis. Infections in these patients are associated with exacerbated inflammation leading to rapid decay of lung function, and in some cases resulting in cepacia syndrome, which is characterized by a fatal acute necrotizing pneumonia and sepsis. B. cenocepacia can survive intracellularly in macrophages by altering the maturation of the phagosome, but very little is known on macrophage responses to the intracellular infection. In this study, we have examined the role of the PI3K/Akt signaling pathway in B. cenocepacia-infected monocytes and macrophages. We show that PI3K/Akt activity was required for NF-kappa B activity and the secretion of proinflammatory cytokines during infection with B. cenocepacia. In contrast to previous observations in epithelial cells infected with other Gram-negative bacteria, Akt did not enhance I kappa B kinase or NF-kappa B p65 phosphorylation, but rather inhibited GSK3 beta, a negative regulator of NF-kappa B transcriptional activity. This novel mechanism of modulation of NF-kappa B activity may provide a unique therapeutic target for controlling excessive inflammation upon B. cenocepacia infection. The Journal of Immunology, 2011, 187: 635-643.