108 resultados para IC engine
A Theoretical and Experimental Study of Resonance in a High Performance Engine Intake System: Part 2
Resumo:
The unsteady gas dynamic phenomena in a racecar airbox have been examined, and resonant tuning effects have been considered. A coupled 1D/3D analysis, using the engine simulation package Virtual 4-Stroke and the CFD package FLUENT, was used to model the engine and airbox. The models were experimentally validated. An airbox was designed with a natural frequency in the region of 75 Hz. A coupled 1D/3D analysis of the airbox and a Yamaha R6 4 cylinder engine predicted resonance at the single-cylinder induction frequency; 75 Hz at an engine speed of 9000 rpm.
Resumo:
To maintain its relevance, motorsport cannot be exempt from
the trend of increasing fuel economy. This bears obvious
competitive benefits as well, either in decreasing the
frequency of pit stops or the mass of fuel carried. Given the
increased points weighting of fuel economy for the Formula
Student (FS) competition, a complete analysis was performed
on the Queen's Formula Racing 600cc motorcycle engine in
preparation for the 2011 competition.
The criteria for such high performance fuel economy differ to
a degree from most mass transportation counterparts and were
divided into three distinct regimes; full load, part load and no
load conditions.
Full load positions naturally demand maximum torque for
performance but that does not imply that fuel savings cannot
be made whilst preserving this. The point at which maximum
torque is produced with minimum air -fuel ratio, Leanest
mixture for Best Torque (LBT), was therefore sought and
mapped for full load.
At part load, torque is less of a concern, and maintaining a
sustainable engine temperature and transient response become
more important. With decreasing AFR, engine temperatures
can rise dramatically so temperatures were measured close to
the exhaust port for a wide range of air-fuel ratios.
Competition track data was analysed to highlight key part load
operating regions and these were mapped according to
measured safe temperature limits. Torque response to a step
throttle change was also measured to ensure suitable engine
transient performance was maintained.
At no load conditions, with low engine speed only idle
conditions need to be satisfied. In the situation where the
engine is still at high speed without load, the engine is being
motored and no fuel is required. An overrun fuel cut was
employed to reflect this giving significant fuel savings. The
effect on torque and engine pickup was measured.
Modifications were also made to the fuel injector location to
improve fuel mixing and evaporation at this lower air flow
condition.
These mapping regimes were implemented and tested using
fully transient lap simulations using competition track data
and a four quadrant AC engine dynamometer. The experiment
indicated a reduction in fuel consumption for 22 laps of the FS
track from 5.08litres to 3.67litres, around 27% in total. The
actual fuel used at the 2011 competition was 3.6 litres while
placing 8th in the endurance event, further validating the
benefits of these mapping regimes.
Resumo:
The two-stroke engine, by its nature is very dependent on the unsteady gas dynamics within an exhaust system. This is demonstrated by the tuning effects on two-stroke engines, which have been well documented. In consideration of current emissions legislation, a two-stroke engine can be fitted with a catalytic converter for the outboard, utility or automotive markets. The catalytic substrate represents a major obstruction to the flow of exhaust gas, which hinders the progression of the main exhausted pulse, and in turn effects the scavenging of the cylinder and ultimately the performance of the engine.
Resumo:
We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely, PTF10hgi, SN2011ke, PTF11rks, SN2011kf, and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high-resolution, optical, and near-infrared spectrum from xshooter provides detection of a broad He I ?10830 emission line in the spectrum (+50 days) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium-free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of 56Co, and would require 1-4 M ? of 56Ni to produce the luminosity. These 56Ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favor energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spin-down of a magnetar reproduces the extensive light curve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of 0.4 <~ E(1051 erg) lsim 6.9 and ejecta masses of 2.3 <~ M ej(M ?) lsim 8.6. The sample of five SL-SNe Ic presented here, combined with SN 2010gx—the best sampled SL-SNe Ic so far—points toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic.
Resumo:
We present observations of the Type Ic supernova (SN Ic) 2011bm spanning a period of about one year. The data establish that SN 2011bm is a spectroscopically normal SN Ic with moderately low ejecta velocities and with a very slow spectroscopic and photometric evolution (more than twice as slow as SN 1998bw). The Pan-STARRS1 retrospective detection shows that the rise time from explosion to peak was 40 days in the R band. Through an analysis of the light curve and the spectral sequence, we estimate a kinetic energy of 7-17 foe and a total ejected mass of 7-17 Mo, 5-10 Mo of which is oxygen and 0.6-0.7 Mo is 56Ni. The physical parameters obtained for SN 2011bm suggest that its progenitor was a massive star of initial mass 30-50 Mo. The profile of the forbidden oxygen lines in the nebular spectra show no evidence of a bi-polar geometry in the ejected material.
Resumo:
Across a range of domains in psychology different theories assume different mental representations of knowledge. For example, in the literature on category-based inductive reasoning, certain theories (e.g., Rogers & McClelland, 2004; Sloutsky & Fisher, 2008) assume that the knowledge upon which inductive inferences are based is associative, whereas others (e.g., Heit & Rubinstein, 1994; Kemp & Tenenbaum, 2009; Osherson, Smith, Wilkie, López, & Shafir, 1990) assume that knowledge is structured. In this article we investigate whether associative and structured knowledge underlie inductive reasoning to different degrees under different processing conditions. We develop a measure of knowledge about the degree of association between categories and show that it dissociates from measures of structured knowledge. In Experiment 1 participants rated the strength of inductive arguments whose categories were either taxonomically or causally related. A measure of associative strength predicted reasoning when people had to respond fast, whereas causal and taxonomic knowledge explained inference strength when people responded slowly. In Experiment 2, we also manipulated whether the causal link between the categories was predictive or diagnostic. Participants preferred predictive to diagnostic arguments except when they responded under cognitive load. In Experiment 3, using an open-ended induction paradigm, people generated and evaluated their own conclusion categories. Inductive strength was predicted by associative strength under heavy cognitive load, whereas an index of structured knowledge was more predictive of inductive strength under minimal cognitive load. Together these results suggest that associative and structured models of reasoning apply best under different processing conditions and that the application of structured knowledge in reasoning is often effortful.
Resumo:
Traditionally, the optimization of a turbomachinery engine casing for tip clearance has involved either twodimensional transient thermomechanical simulations or three-dimensional mechanical simulations. This paper illustrates that three-dimensional transient whole-engine thermomechanical simulations can be used within tip clearance optimizations and that the efficiency of such optimizations can be improved when a multifidelity surrogate modeling approach is employed. These simulations are employed in conjunction with a rotor suboptimization using surrogate models of rotor-dynamics performance, stress, mass and transient displacements, and an engine parameterization.
Resumo:
With the legislative demands increasing on recreational vehicles and utility engined applications, the two-stroke engine is facing increasing pressure to meet these requirements. One method of achieving the required reduction is via the introduction of a catalytic converter. The catalytic converter not only has to deal with the characteristically higher CO and HC concentration, but also any oil which is added to lubricate the engine. In a conventional two-stroke engine with a total loss lubrication system, the oil is either scavenged straight out the exhaust port or is entrained, involved in combustion and is later exhausted. This oil can have a significant effect on the performance of the catalyst.
To investigate the oiling effect, three catalytic converters were aged using a 400cm₃ DI two-stroke engine. A finite level of oil was added to the inlet air of the engine to lubricate the internal workings. The oil flow rate is independent of the engine speed and load.
Three catalysts were aged for 50 hours, experiencing a constant space velocity and set engine conditions. The engine was fueled on petrol and later on propane to eliminate the effects, if any, of petrol additives on catalyst deactivation. The oiling rate was varied to investigated deactivation from oil contamination. Post-mortem analysis was performed on the three catalysts. This consisted of a controlled light-off test performed on a catalyst rig, during which period, temperatures were measured and recorded towere aged for 50 hours, experiencing a constant space velocity and set engine conditions. The engine was fueled on petrol and later on propane to eliminate the effects, if any, of petrol additives on catalyst deactivation. The oiling rate was varied to investigated deactivation from oil contamination. Post-mortem analysis was performed on the three catalysts. This consisted of a controlled light-off test performed on a catalyst rig, during which period, temperatures were measured and recorded to find out where deactivation of each catalyst was occurring. The recorded results were all analyzed and these showed that from the measured light-off temperatures the aged catalysts behaved similarly. However the pattern in the light-off was significantly different when the engine was fueled by propane as opposed to gasoline.
Resumo:
We report the results of our search for the progenitor candidate of SN 2013dk, a Type Ic supernova (SN) that exploded in the Antennae galaxy system. We compare pre-explosion Hubble Space Telescope (HST) archival images with SN images obtained using adaptive optics at the ESO Very Large Telescope. We isolate the SN position to within 3σ uncertainty radius of 0.02 arcsec and show that there is no detectable point source in any of the HST filter images within the error circle. We set an upper limit to the absolute magnitude of the progenitor to be MF555W ≳ -5.7, which does not allow Wolf-Rayet (WR) star progenitors to be ruled out. A bright source appears 0.17 arcsec away, which is either a single bright supergiant or compact cluster, given its absolute magnitude of MF555W = -9.02 ± 0.28 extended wings and complex environment. However, even if this is a cluster, the spatial displacement of SN 2013dk means that its membership is not assured. The strongest statement that we can make is that in the immediate environment of SN 2013dk (within 10 pc or so), we find no clear evidence of either a point source coincident with the SN or a young stellar cluster that could host a massive WR progenitor.
Resumo:
We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3π survey just ~4 days after explosion. The supernova (SN) had a peak luminosity, MR ≈ -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v Si ≈ 19 × 103 km s-1 at ~40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines ~2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of 56Ni, M Ni = 0.9 M ⊙. Applying scaling relations to the light curve, we estimate a total ejecta mass, M ej ≈ 4.7 M ⊙, and total kinetic energy, EK ≈ 11 × 1051 erg. The ratio of M Ni to M ej is ~2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H)PP04 + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and ~0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E γ ~ 1048 erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less-stringent constraints on a weak afterglow like that seen from XRF 060218. If this SN did not harbor a GRB, these observations challenge the importance of progenitor metallicity for the production of relativistic ejecta and suggest that other parameters also play a key role.
Resumo:
Turbogenerating is a form of turbocompounding whereby a Turbogenerator is placed in the exhaust stream of an internal combustion engine. The Turbogenerator converts a portion of the expelled energy in the exhaust gas into electricity which can then be used to supplement the crankshaft power. Previous investigations have shown how the addition of a Turbogenerator can increase the system efficiency by up to 9%. However, these investigations pertain to the engine system operating at one fixed engine speed. The purpose of this paper is to investigate how the system and in particular the Turbogenerator operate during engine speed transients. On turbocharged engines, turbocharger lag is an issue. With the addition of a Turbogenerator, these issues can be somewhat alleviated. This is done by altering the speed at which the Turbogenerator operates during the engine’s speed transient. During the transients, the Turbogenerator can be thought to act in a similar manner to a variable geometry turbine where its speed can cause a change in the turbocharger turbine’s pressure ratio. This paper shows that by adding a Turbogenerator to a turbocharged engine the transient performance can be enhanced. This enhancement is shown by comparing the turbogenerated engine to a similar turbocharged engine. When comparing the two engines, it can be seen that the addition of a Turbogenerator can reduce the time taken to reach full power by up to 7% whilst at the same time, improve overall efficiency by 7.1% during the engine speed transient.