108 resultados para Helical shear
Resumo:
The granular product being designed in this work required the use of two different powders namely limestone and teawaste; these materials have different bulk and particle densities. The overall aim of the project was to obtain a granular product in the size range of 2 to 4. mm. The two powders were granulated in different proportions using carboxymethylcellulose (CMC) as the binder. The effect of amount of binder added, relative composition of the powder, and type of teawaste on the product yield was studied. The results show that the optimum product yield was a function of both relative powder composition and the amount of binder used; increasing the composition of teawaste in the powder increased the amount of binder required for successful granulation. An increase in the mass fraction of teawaste in the powder mix must be accompanied by an increase in the amount of binder to maintain the desired product yield.
Resumo:
Small mixer impeller design is not tailored for granulation because impellers are intended for a wide range of processes. The aim of this research was to evaluate the performances of several impellers to provide guidance on the selection and design for the purposes of granulation. Lactose granules were produced using wet granulation with water as a binder. A Kenwood KM070 mixer was used as a standard apparatus and five impeller designs with different shapes and surface areas were used. The efficacy of granulate formation was measured by adding an optically sensitive tracer to determine variations in active ingredient content across random samples of granules from the same size classes. It was found that impeller design influenced the homogeneity of the granules and therefore can affect final product performance. The variation in active ingredient content across granules of differing size was also investigated. The results show that small granules were more potent than larger granules.
Resumo:
A novel digital image correlation (DIC) technique has been developed to track changes in textile yarn orientations during shear characterisation experiments, requiring only low-cost digital imaging equipment. Fabric shear angles and effective yarn strains are calculated and visualised using this new DIC technique for bias extension testing of an aerospace grade, carbon-fibre reinforcement material with a plain weave architecture. The DIC results are validated by direct measurement, and the use of a wide bias extension sample is evaluated against a more commonly used narrow sample. Wide samples exhibit a shear angle range 25% greater than narrow samples and peak loads which are 10 times higher. This is primarily due to excessive yarn slippage in the narrow samples; hence, the wide sample configuration is recommended for characterisation of shear properties which are required for accurate modelling of textile draping.
Resumo:
A pair of curved shocks in a collisionless plasma is examined with a two-dimensional particle-in-cell simulation. The shocks are created by the collision of two electron-ion clouds at a speed that exceeds everywhere the threshold speed for shock formation. A variation of the collision speed along the initially planar collision boundary, which is comparable to the ion acoustic speed, yields a curvature of the shock that increases with time. The spatially varying Mach number of the shocks results in a variation of the downstream density in the direction along the shock boundary. This variation is eventually equilibrated by the thermal diffusion of ions. The pair of shocks is stable for tens of inverse ion plasma frequencies. The angle between the mean flow velocity vector of the inflowing upstream plasma and the shock's electrostatic field increases steadily during this time. The disalignment of both vectors gives rise to a rotational electron flow, which yields the growth of magnetic field patches that are coherent over tens of electron skin depths.
Resumo:
A significant increase in strength and performance of reinforced concrete, timber and metal beams may be achieved by adhesively bonding a fibre reinforced polymer composite, or metallic such as steel plate to the tension face of a beam. One of the major failure modes in these plated beams is the debonding of the plate from the original beam in a brittle manner. This is commonly attributed to the interfacial stresses between the adherends whose quantification has led to the development of many analytical solutions over the last two decades. The adherends are subjected to axial, bending and shear deformations. However, most analytical solutions have neglected the effect of shear deformation in adherends. Few solutions consider this effect approximately but are limited to one or two specific loading conditions. This paper presents a more rigorous solution for interfacial stresses in plated beams under an arbitrary loading with the shear deformation of the adherends duly considered in closed form using Timoshenko’s beam theory. The solution is general to linear elastic analysis of prismatic beams of arbitrary cross section under arbitrary loading with a plate of any thickness bonded either symmetrically or asymmetrically with respect to the span of the beam.
Resumo:
RC beams shear-strengthened with externally-bonded FRP side strips or U-strips usually fail by debonding. As such debonding occurs in a brittle manner at relatively small shear crack widths, some of the internal steel stirrups may not have reached yielding at beam shear failure. Consequently, the internal steel stirrups cannot be fully utilized. This adverse shear interaction between internal steel stirrups and external FRP strips may significantly reduce the benefit of shear-strengthening FRP but has not been considered by any of the existing FRP strengthening design guidelines. In this paper, an improved shear strength model capable of accounting for the effect of the above shear interaction is first presented, in which the unfavorable effect of shear interaction is reflected through a reduction factor (i.e. shear interaction factor). Using a large test database established in the present study, the performance of the proposed model as well as that of three other shear strength models is then assessed. This assessment shows that the proposed shear strength model performs better than the three existing models. The assessment also shows that the inclusion of the proposed shear interaction factor in the existing models can significantly improve their performance.
Resumo:
This paper presents an experimental study evaluating the effectiveness of the Near Surface Mounted (NSM) technique with innovative manually made FRP bars (MMFRP) for shear strengthening of RC beams. RC beams designed to fail in shear were tested in three-point bending. To delay the onset of MMFRP bar debonding, a new anchorage is also developed and tested. This paper reports the results of a series of tests on simply supported rectangular RC beams, strengthened in shear with MMFRP bar either with or without the proposed anchorage. The load-deflection responses of all test beams are plotted, in addition to selected strain results. Performance and the failure modes of the test beams are presented and discussed in this paper. The proposed MMFRP bars and end anchorage enhanced the shear capacity between 25 to 48% over the control specimen. Furthermore, the adoption of the proposed end anchorage of MMFRP bars significantly enhanced the ductility of the test specimens.