96 resultados para HYPOXIA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the role of the C1772T polymorphisms in exon 12 of the Hypoxia-inducible factor-1 alpha (HIF-1alpha) gene C1772T genotype in prostate cancer (PCa) and amplification of the hypoxic response. We identified the heterozygous germline CT genotype as an increased risk factor for clinically localised prostate cancer (Odds ratio = 6.2; p < 0.0001). While immunostaining intensity for HIF-1alpha and VEGF was significantly enhanced in 75% of PCa specimens when compared to matched benign specimens (p < 0.0001), the CT genotype did not modulate the kinetics of HIF-1alpha protein expression in hypoxia in vitro, and was not associated with enhanced expression of hypoxic biomarkers. This study provides the first evidence of an increased risk for clinically localised prostate cancer in men carrying the C1772T HIF-1alpha gene polymorphism. Although our results did not suggest an association between expression of hypoxic biomarkers and genotype status, the correlation may merit further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant evidence has accumulated indicating that certain genes are induced by ionising radiation. An implication of this observation is that their promoter regions include radiation-responsive sequences. These sequences have been isolated in the promoter of several genes including Erg-1, p21/WAF-1, GADD45alpha and t-PA. The mechanism by which radiation induces gene expression remains unclear but involves putative binding sites for selected transcription factors and/or p53. Consensus CC(A/T)6GG sequences have been localized in the Erg-1 promoter and are referred to as serum response elements or CArG elements. The tandem combination of CArG elements has been shown to improve gene expression levels, with a 9-copy motif conferring maximum inducibility. The response of these genes to ionising radiation appears to follow a sigmoid relationship with time and dose. Therapeutic induction of suicide genes and significant cytotoxicity can be achieved at clinically relevant x-rays doses both in vitro and in vivo but was found to be cell-type dependent. Radiation-inducible gene therapy can be potentially enhanced by exploiting hypoxia through the inclusion of hypoxia-response element motifs in the expression cassette, the use of the anaerobic bacteria or the use of neutron irradiation. These results are encouraging and provide significant evidence that gene therapy targeted to the radiation field is a reasonably attractive therapeutic option and could help overcome hypoxic radioresistant tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolic changes are a well-described hallmark of cancer and are responses to changes in the activity of diverse oncogenes and tumour suppressors. For example, steroid hormone biosynthesis is intimately associated with changes in lipid metabolism and represents a therapeutic intervention point in the treatment of prostate cancer (PCa). Both prostate gland development and tumorigenesis rely on the activity of a steroid hormone receptor family member, the androgen receptor (AR). Recent studies have sought to define the biological effect of the AR on PCa by defining the whole-genome binding sites and gene networks that are regulated by the AR. These studies have provided the first systematic evidence that the AR influences metabolism and biosynthesis at key regulatory steps within pathways that have also been defined as points of influence for other oncogenes, including c-Myc, p53 and hypoxia-inducible factor 1α, in other cancers. The success of interfering with these pathways in a therapeutic setting will, however, hinge on our ability to manage the concomitant stress and survival responses induced by such treatments and to define appropriate therapeutic windows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human induced pluripotent stem (iPS) cell-derived endothelial cells (ECs) hold clear potential for therapeutic angiogenesis as a novel strategy for ischaemic disease. Recently, we have developed a novel method for direct reprogramming of partial iPS (PiPS) cells, which unlike iPS cells, are generated before pluripotency so do not form tumours, and may be differentiated into ECs with characteristic morphology and pro-angiogenic actions. Our previous work showed that PiPS-derived ECs are capable of forming vascular-like tubes both in vitro and in vivo and promoting re-endothelialisation of ischemic tissue, with greater effectiveness versus mature ECs.

Interestingly, our preliminary data demonstrate that Nox NADPH oxidases, which are reported to influence stem cell function, are progressively induced during PiPs/PiPS-EC differentiation and in response to hypoxia, with Nox4 demonstrating highest expression. As this isoform is an established regulator of angiogenesis, we hypothesize that Nox4 plays a key role in modulating PiPS-EC generation and angiogenic function.

The aim of this project is therefore to investigate: (1) the specific role of Nox4 in direct reprogramming of PiPS cells and differentiation to PiPS-ECs; (2) whether genetic manipulation of Nox4 influences in vitro function of PiPs-ECs and their ability to promote in vivo angiogenesis. This will be achieved by employing established in vitro functional assays and an experimental model of hindlimb ischaemia with assessment of relevant end-points. Identification of a key role for Nox4 in regulating PiPS-EC generation/function may inform selective targeting of this isoform to enhance the efficiency of PiPS-EC differentiation and their capacity to treat ischemic disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute respiratory distress syndrome presents as hypoxia and bilateral pulmonary infiltrates on chest imaging in the absence of heart failure sufficient to account for this clinical state. Management is largely supportive, and is focused on protective mechanical ventilation and the avoidance of fluid overload. Patients with severe hypoxaemia can be managed with early short-term use of neuromuscular blockade, prone position ventilation, or extracorporeal membrane oxygenation. The use of inhaled nitric oxide is rarely indicated and both β2 agonists and late corticosteroids should be avoided. Mortality remains at approximately 30%.