220 resultados para Grew, Nehemiah, 1641-1712
Resumo:
A full hardware implementation of a Weighted Fair Queuing (WFQ) packet scheduler is proposed. The circuit architecture presented has been implemented using Altera Stratix II FPGA technology, utilizing RLDII and QDRII memory components. The circuit can provide fine granularity Quality of Service (QoS) support at a line throughput rate of 12.8Gb/s in its current implementation. The authors suggest that, due to the flexible and scalable modular circuit design approach used, the current circuit architecture can be targeted for a full ASIC implementation to deliver 50 Gb/s throughput. The circuit itself comprises three main components; a WFQ algorithm computation circuit, a tag/time-stamp sort and retrieval circuit, and a high throughput shared buffer. The circuit targets the support of emerging wireline and wireless network nodes that focus on Service Level Agreements (SLA's) and Quality of Experience.
Resumo:
Measuring the degree of inconsistency of a belief base is an important issue in many real world applications. It has been increasingly recognized that deriving syntax sensitive inconsistency measures for a belief base from its minimal inconsistent subsets is a natural way forward. Most of the current proposals along this line do not take the impact of the size of each minimal inconsistent subset into account. However, as illustrated by the well-known Lottery Paradox, as the size of a minimal inconsistent subset increases, the degree of its inconsistency decreases. Another lack in current studies in this area is about the role of free formulas of a belief base in measuring the degree of inconsistency. This has not yet been characterized well. Adding free formulas to a belief base can enlarge the set of consistent subsets of that base. However, consistent subsets of a belief base also have an impact on the syntax sensitive normalized measures of the degree of inconsistency, the reason for this is that each consistent subset can be considered as a distinctive plausible perspective reflected by that belief base,whilst eachminimal inconsistent subset projects a distinctive viewof the inconsistency. To address these two issues,we propose a normalized framework formeasuring the degree of inconsistency of a belief base which unifies the impact of both consistent subsets and minimal inconsistent subsets. We also show that this normalized framework satisfies all the properties deemed necessary by common consent to characterize an intuitively satisfactory measure of the degree of inconsistency for belief bases. Finally, we use a simple but explanatory example in equirements engineering to illustrate the application of the normalized framework.
Resumo:
Recent years have witnessed an incredibly increasing interest in the topic of incremental learning. Unlike conventional machine learning situations, data flow targeted by incremental learning becomes available continuously over time. Accordingly, it is desirable to be able to abandon the traditional assumption of the availability of representative training data during the training period to develop decision boundaries. Under scenarios of continuous data flow, the challenge is how to transform the vast amount of stream raw data into information and knowledge representation, and accumulate experience over time to support future decision-making process. In this paper, we propose a general adaptive incremental learning framework named ADAIN that is capable of learning from continuous raw data, accumulating experience over time, and using such knowledge to improve future learning and prediction performance. Detailed system level architecture and design strategies are presented in this paper. Simulation results over several real-world data sets are used to validate the effectiveness of this method.
Resumo:
A service is a remote computational facility which is made available for general use by means of a wide-area network. Several types of service arise in practice: stateless services, shared state services and services with states which are customised for individual users. A service-based orchestration is a multi-threaded computation which invokes remote services in order to deliver results back to a user (publication). In this paper a means of specifying services and reasoning about the correctness of orchestrations over stateless services is presented. As web services are potentially unreliable the termination of even finite orchestrations cannot be guaranteed. For this reason a partial-correctness powerdomain approach is proposed to capture the semantics of recursive orchestrations.
Resumo:
Quantum-dot Cellular Automata (QCA) technology is a promising potential alternative to CMOS technology. To explore the characteristics of QCA and suitable design methodologies, digital circuit design approaches have been investigated. Due to the inherent wire delay in QCA, pipelined architectures appear to be a particularly suitable design technique. Also, because of the pipeline nature of QCA technology, it is not suitable for complicated control system design. Systolic arrays take advantage of pipelining, parallelism and simple local control. Therefore, an investigation into these architectures in QCA technology is provided in this paper. Two case studies, (a matrix multiplier and a Galois Field multiplier) are designed and analyzed based on both multilayer and coplanar crossings. The performance of these two types of interconnections are compared and it is found that even though coplanar crossings are currently more practical, they tend to occupy a larger design area and incur slightly more delay. A general semi-conductor QCA systolic array design methodology is also proposed. It is found that by applying a systolic array structure in QCA design, significant benefits can be achieved particularly with large systolic arrays, even more so than when applied in CMOS-based technology.
Resumo:
For many years psychological research on facial expression of emotion has relied heavily on a recognition paradigm based on posed static photographs. There is growing evidence that there may be fundamental differences between the expressions depicted in such stimuli and the emotional expressions present in everyday life. Affective computing, with its pragmatic emphasis on realism, needs examples of natural emotion. This paper describes a unique database containing recordings of mild to moderate emotionally coloured responses to a series of laboratory based emotion induction tasks. The recordings are accompanied by information on self-report of emotion and intensity, continuous trace-style ratings of valence and intensity, the sex of the participant, the sex of the experimenter, the active or passive nature of the induction task and it gives researchers the opportunity to compare expressions from people from more than one culture.
Resumo:
We propose simple models to predict the performance degradation of disk requests due to storage device contention in consolidated virtualized environments. Model parameters can be deduced from measurements obtained inside Virtual Machines (VMs) from a system where a single VM accesses a remote storage server. The parameterized model can then be used to predict the effect of storage contention when multiple VMs are consolidated on the same server. We first propose a trace-driven approach that evaluates a queueing network with fair share scheduling using simulation. The model parameters consider Virtual Machine Monitor level disk access optimizations and rely on a calibration technique. We further present a measurement-based approach that allows a distinct characterization of read/write performance attributes. In particular, we define simple linear prediction models for I/O request mean response times, throughputs and read/write mixes, as well as a simulation model for predicting response time distributions. We found our models to be effective in predicting such quantities across a range of synthetic and emulated application workloads.
Resumo:
The motivation for this paper is to present an approach for rating the quality of the parameters in a computer-aided design model for use as optimization variables. Parametric Effectiveness is computed as the ratio of change in performance achieved by perturbing the parameters in the optimum way, to the change in performance that would be achieved by allowing the boundary of the model to move without the constraint on shape change enforced by the CAD parameterization. The approach is applied in this paper to optimization based on adjoint shape sensitivity analyses. The derivation of parametric effectiveness is presented for optimization both with and without the constraint of constant volume. In both cases, the movement of the boundary is normalized with respect to a small root mean squared movement of the boundary. The approach can be used to select an initial search direction in parameter space, or to select sets of model parameters which have the greatest ability to improve model performance. The approach is applied to a number of example 2D and 3D FEA and CFD problems.
Resumo:
This paper presents an approach which enables new parameters to be added to a CAD model for optimization purposes. It aims to remove a common roadblock to CAD based optimization, where the parameterization of the model does not offer the shape sufficient flexibility for a truly optimized shape to be created. A technique has been developed which uses adjoint based sensitivity maps to predict
the sensitivity of performance to the addition to a model of four different feature types, allowing the feature providing the greatest benefit to be selected. The optimum position to add the feature is also discussed. It is anticipated that the approach could be used to iteratively add features to a model, providing greater flexibility to the shape of the model, and allowing the newly-added parameters to be used as design variables in a subsequent shape optimization.
Resumo:
As a class of defects in software requirements specification, inconsistency has been widely studied in both requirements engineering and software engineering. It has been increasingly recognized that maintaining consistency alone often results in some other types of non-canonical requirements, including incompleteness of a requirements specification, vague requirements statements, and redundant requirements statements. It is therefore desirable for inconsistency handling to take into account the related non-canonical requirements in requirements engineering. To address this issue, we propose an intuitive generalization of logical techniques for handling inconsistency to those that are suitable for managing non-canonical requirements, which deals with incompleteness and redundancy, in addition to inconsistency. We first argue that measuring non-canonical requirements plays a crucial role in handling them effectively. We then present a measure-driven logic framework for managing non-canonical requirements. The framework consists of five main parts, identifying non-canonical requirements, measuring them, generating candidate proposals for handling them, choosing commonly acceptable proposals, and revising them according to the chosen proposals. This generalization can be considered as an attempt to handle non-canonical requirements along with logic-based inconsistency handling in requirements engineering.
Resumo:
Per-core scratchpad memories (or local stores) allow direct inter-core communication, with latency and energy advantages over coherent cache-based communication, especially as CMP architectures become more distributed. We have designed cache-integrated network interfaces, appropriate for scalable multicores, that combine the best of two worlds – the flexibility of caches and the efficiency of scratchpad memories: on-chip SRAM is configurably shared among caching, scratchpad, and virtualized network interface (NI) functions. This paper presents our architecture, which provides local and remote scratchpad access, to either individual words or multiword blocks through RDMA copy. Furthermore, we introduce event responses, as a technique that enables software configurable communication and synchronization primitives. We present three event response mechanisms that expose NI functionality to software, for multiword transfer initiation, completion notifications for software selected sets of arbitrary size transfers, and multi-party synchronization queues. We implemented these mechanisms in a four-core FPGA prototype, and measure the logic overhead over a cache-only design for basic NI functionality to be less than 20%. We also evaluate the on-chip communication performance on the prototype, as well as the performance of synchronization functions with simulation of CMPs with up to 128 cores. We demonstrate efficient synchronization, low-overhead communication, and amortized-overhead bulk transfers, which allow parallelization gains for fine-grain tasks, and efficient exploitation of the hardware bandwidth.
Resumo:
Multicore computational accelerators such as GPUs are now commodity components for highperformance computing at scale. While such accelerators have been studied in some detail as stand-alone computational engines, their integration in large-scale distributed systems raises new challenges and trade-offs. In this paper, we present an exploration of resource management alternatives for building asymmetric accelerator-based distributed systems. We present these alternatives in the context of a capabilities-aware framework for data-intensive computing, which uses an enhanced implementation of the MapReduce programming model for accelerator-based clusters, compared to the state of the art. The framework can transparently utilize heterogeneous accelerators for deriving high performance with low programming effort. Our work is the first to compare heterogeneous types of accelerators, GPUs and a Cell processors, in the same environment and the first to explore the trade-offs between compute-efficient and control-efficient accelerators on data-intensive systems. Our investigation shows that our framework scales well with the number of different compute nodes. Furthermore, it runs simultaneously on two different types of accelerators, successfully adapts to the resource capabilities, and performs 26.9% better on average than a static execution approach.