95 resultados para Grain crops
Resumo:
There are more than 300 potential mycotoxins that can contaminate food and feed and cause adverse effects in humans and animals. The data on the co-occurrence of mycotoxins in novel animal feed materials, such as distiller's dried grain with solubles (DDGS), are limited. Thus, a UHPLC-MS/MS method for the quantitation of 77 mycotoxins and other fungal metabolites was used to analyze 169 DDGS samples produced from wheat, maize, and barley and 61 grain samples. All DDGS samples analyzed were contaminated with 13-34 different mycotoxins. Fumonisins were present in all 52 maize DDGS samples (81.0-6890 μg/kg for fumonisin B1), and deoxynivalenol was present in all 99 wheat DDGS samples (39.3-1120 μg/kg). A number of co-occurring mycotoxins were also identified. Due to the high co-occurrence of mycotoxins, routine screening of the animal feed ingredients is highly recommended to allow the highlighted risks to be effectively managed.
Resumo:
With biochar becoming an emerging soil amendment and a tool to mitigate climate change, there are only a few studies documenting its effects on trace element cycling in agriculture. Zn and Cu are deficient in many human diets, whilst exposures to As, Pb and Cd need to be decreased. Biochar has been shown to affect many of them mainly at a bench or greenhouse scale, but field research is not available. In our experiment we studied the impact of biochar, as well as its interactions with organic (compost and sewage sludge) and mineral fertilisers (NPK and nitrosulfate), on trace element mobility in a Mediterranean agricultural field (east of Madrid, Spain) cropped with barley. At harvesting time, we analysed the soluble fraction, the available fraction (assessed with the diffusive gradients in thin gels technique, DGT) and the concentration of trace elements in barley grain. No treatment was able to significantly increase Zn, Cu or Ni concentration in barley grain, limiting the application for cereal fortification. Biochar helped to reduce Cd and Pb in grain, whereas As concentration slightly increased. Overall biochar amendments demonstrated a potential to decrease Cd uptake in cereals, a substantial pathway of exposure in the Spanish population, whereas mineral fertilisation and sewage sludge increased grain Cd and Pb. In the soil, biochar helped to stabilise Pb and Cd, while marginally increasing As release/mobilisation. Some of the fertilisation practises or treatments increased toxic metals and As solubility in soil, but never to an extent high enough to be considered an environmental risk. Future research may try to fortify Zn, Cu and Ni using other combinations of organic amendments and different parent biomass to produce enriched biochars.
Resumo:
Genetically engineered (GE) crops are subject to regulatory oversight to ensure their safety for humans and the environment. Their approval in the European Union (EU) starts with an application in a given Member State followed by a scientific step (risk assessment), and ends with a political decision-making step (risk management); and in the United States (US) it starts with a scientific (field trial) step and ends with a ‘bureaucratic’ decision-making step. We investigated trends for the time taken for these steps and the overall time taken for approving GE crops in the US and the EU (traders in these commodities). Results show that from 1996-2015 the overall time trend for approval in the EU decreased and then flattened off, with an overall mean completion-time of 1,763 days. In the US in 1998 there was a break in the trend of the overall approval time: Initially, from 1988 until 1997 the trend decreased with a mean approval time of 1,321 days; from 1998-2015, the trend almost stagnated with a mean approval time of 2,467 days.