118 resultados para Government, Resistance to.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The treatment of infections caused by bacteria resistant to the vast majority of antibiotics is a challenge worldwide. Antimicrobial peptides (APs) make up the front line of defense in those areas exposed to microorganisms, and there is intensive research to explore their use as new antibacterial agents. On the other hand, it is known that subinhibitory concentrations of antibiotics affect the expression of numerous bacterial traits. In this work we evaluated whether treatment of bacteria with subinhibitory concentrations of quinolones may alter the sensitivity to APs. A 1-h treatment of Klebsiella pneumoniae with 0.25 x the MIC of ciprofloxacin rendered bacteria more sensitive to polymyxins B and E, human neutrophil defensin 1, and beta-defensin 1. Levofloxacin and nalidixic acid at 0.25 x the MICs also increased the sensitivity of K. pneumoniae to polymyxin B, whereas gentamicin and ceftazidime at 0.25 x the MICs did not have such an effect. Ciprofloxacin also increased the sensitivities of K. pneumoniae ciprofloxacin-resistant strains to polymyxin B. Two other pathogens, Pseudomonas aeruginosa and Haemophilus influenzae, also became more sensitive to polymyxins B and E after treatment with 0.25 x the MIC of ciprofloxacin. Incubation with ciprofloxacin did not alter the expression of the K. pneumoniae loci involved in resistance to APs. A 1-N-phenyl-naphthylamine assay showed that ciprofloxacin and levofloxacin increased the permeabilities of the K. pneumoniae and P. aeruginosa outer membranes, while divalent cations antagonized this action. Finally, we demonstrated that ciprofloxacin and levofloxacin increased the binding of APs to the outer membrane by using dansylated polymyxin B.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transfer of resistance to the phosphorothioamidate herbicide, amiprophosmethyl (APM), from the P-tubulin mutant of Nicotiana plumbaginifolia to the interspecific N, plumbaginifolia (+) N, sylvestris is and to the intertribal N, plumbaginifolia (+) Atropa belladonna somatic hybrids has been demonstrated. Transfer to the recipient species was accomplished by: (1) symmetric hybridisation and (2) asymmetric hybridisation using gamma-irradiation of donor protoplasts. Cytogenetic analysis confirmed the hybrid origin of the hybrids obtained. It was established that most of them typically inherited no more than three donor chromosomes, although it was possible to obtain symmetric hybrids in the case of symmetric fusion. Immunofluorescent microscopy analysis has shown that protoplasts of the mutant, and of the N. plumbagini-folia (+) N. sylvestris and N. plumbaginifolia (+) A. belladonna hybrids, retained the normal structure of interphase microtubule (MT) arrays and mitotic figures after treatment with 5 mu M APM, whereas MTs of protoplasts of the recipients were destroyed under these conditions. It was also shown that hybrid clones contained an altered beta-tubulin isoform originating from the N. plumbaginifolia mutant. The selected hybrid clones were characterised by cross-resistance to trifluralin, a dinitroaniline herbicide with the same mode of anti-MT action. Some of the somatic hybrids which could flower were fertile. It was established that seeds of some fertile hybrids were able to germinate in the presence of 5 mu M APM. The results obtained thus support the conclusion that the technique of somatic hybridisation, especially asymmetric fusion, can be used to transfer APM resistance from the N. plumbaginifolia mutant to different (related and remote) plant species of the Solanaceae, including important crops.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nalidixic acid-resistant Salmonella enterica serovars Kentucky (n5) and Virchow (n6) cultured from individuals were investigated for the presence of plasmid-mediated quinolone resistance (PMQR) determinants.

PMQR markers and mutations within the quinolone resistance-determining regions of the target genes were investigated by PCR followed by DNA sequencing. Conjugation, plasmid profiling and targeted PCR were performed to demonstrate the transferability of the qnrS1 gene. Subsequently, a plasmid was identified that carried a quinolone resistance marker and this was completely sequenced.

A Salmonella Virchow isolate carried a qnrS1 gene associated with an IncN incompatibility group conjugative plasmid of 40995 bp, which was designated pVQS1. The latter conferred resistance to ampicillin and nalidixic acid and showed sequence similarity in its core region to plasmid R46, whilst the resistance-encoding region was similar to pAH0376 from Shigella flexneri and pINF5 from Salmonella Infantis and contained an IS26 remnant, a complete Tn3 structure, a truncated IS2 element and a qnrS1 marker, followed by IS26. In contrast to pINF5, IS26 was identified immediately downstream of the qnrS1 gene.

This is the first known report of a qnrS1 gene in Salmonella spp. in Switzerland. Analysis of the complete nucleotide sequence of the qnrS1-containing plasmid showed a novel arrangement of this antibiotic resistance-encoding region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use Burkholderia cenocepacia as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB) and also other bactericidal antibiotics. Here, we report that B. cenocepacia is heteroresistant to PmB. Population analysis profiling also identified B. cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa and Escherichia coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of B. cenocepacia to various bactericidal antibiotics. We propose that putrescine and YceI resemble "danger" infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article reconstructs British constitutional policy in Northern Ireland after power-sharing collapsed in May 1974. Over the following two years, the British government publicly emphasised that Northern Ireland would decide its own future, but ministers secretly considered a range of options including withdrawal, integration and Dominion status. These discussions have been fundamentally misunderstood by previous authors, and this article shows that Harold Wilson did not seriously advocate withdrawal nor was policy as inconsistent as argued elsewhere. An historical approach, drawing from recently released archival material, shows that consociationalists such as Brendan O'Leary and Michael Kerr have neglected the proper context of government policy because of their commitment to a particular form of government, failing to recognise the constraints under which ministers operated. The British government remained committed to an internal devolved settlement including both communities but was unable to impose one.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The basic helix-loop-helix protein achaete-scute homolog-1 (ASH1) is involved in lung neuroendocrine (NE) differentiation and tumor promotion in SV40 transgenic mice. Constitutive expression of human ASH-1 (hASH1) in mouse lung results in hyperplasia and remodeling that mimics bronchiolization of alveoli (BOA), a potentially premalignant lesion of human lung carcinomas. We now show that this is due to sustained cellular proliferation in terminal bronchioles and resistance to apoptosis. Throughout the airway epithelium the expression of anti-apoptotic Bcl-2 and c-Myb was increased and Akt/mTOR pathway activated. Moreover, the expression of matrix metalloproteases (MMPs) including MMP7 was specifically enhanced at the bronchiolo-alveolar duct junction and BOA suggesting that MMPs play a key role in this microenvironment during remodeling. We also detected MMP7 in 70% of human BOA lesions. Knockdown of hASH1 gene in human lung cancer cells in vitro suppressed growth by increasing apoptosis. We also show that forced expression of hASH1 in immortalized human bronchial epithelial cells decreases apoptosis. We conclude that the impact of hASH1 is not limited to cells with NE phenotype. Rather, constitutive expression of hASH1 in lung epithelium promotes remodeling through multiple pathways that are commonly activated during lung carcinogenesis. The collective results suggest a novel model of BOA formation via hASH1-induced suppression of the apoptotic pathway. Our study yields a promising new preclinical tool for chemoprevention of peripheral lung carcinomas. © 2007 USCAP, Inc All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

SUMMARY A study was carried out to investigate whether the action of triclabendazole sulphoxide (TCBZ.SO) against the liver fluke, Fasciola hepatica is altered by inhibition of P-glycoprotein (Pgp)-linked drug efflux pumps. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible fluke isolates were used for this in vitro study and the Pgp inhibitor selected was R(+)-verapamil [R(+)-VPL]. For experiments with the Oberon isolate, flukes were incubated for 24 h with either R(+)-VPL (1×10-4 m) on its own, TCBZ.SO (15 µg mL-1) alone, a combination of R(+)-VPL (1×10-4 m) plus TCBZ.SO (15 µg mL-1), TCBZ.SO (50 µg mL-1) on its own, or a combination of TCBZ.SO (50 µg mL-1) plus R(+)-VPL (1×10-4 m). They were also incubated in TCBZ.SO (50 µg mL-1) alone or in combination with R(+)-VPL (1×10-4 m) until they became inactive; and in TCBZ.SO (50 µg mL-1) alone for a time to match that of the combination inactivity time. Flukes from the Cullompton isolate were treated with either TCBZ.SO (50 µg mL-1) alone or in combination with R(+)-VPL (1×10-4 m) until they became inactive, or with TCBZ.SO (50 µg mL-1) alone time-matched to the combination inactivity time. Morphological changes resulting from drug treatment and following Pgp inhibition were assessed by means of scanning electron microscopy. Incubation in R(+)-VPL alone had a minimal effect on either isolate. TCBZ.SO treatment had a relatively greater impact on the TCBZ-susceptible Cullompton isolate. When R(+)-VPL was combined with TCBZ.SO in the incubation medium, however, the surface disruption to both isolates was more severe than that seen after TCBZ.SO treatment alone; also, the time taken to reach inactivity was shorter. More significantly, though, the potentiation of drug activity was greater in the Oberon isolate; also, it was more distinct at the higher concentration of TCBZ.SO. So, the Oberon isolate appears to be particularly sensitive to efflux pump inhibition. The results of this study suggest that enhanced drug efflux in the Oberon isolate may be involved in the mechanism of resistance to TCBZ.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Resistance to chemotherapy and molecularly targeted therapies is a major problem facing current cancer research. The mechanisms of resistance to 'classical' cytotoxic chemotherapeutics and to therapies that are designed to be selective for specific molecular targets share many features, such as alterations in the drug target, activation of prosurvival pathways and ineffective induction of cell death. With the increasing arsenal of anticancer agents, improving preclinical models and the advent of powerful high-throughput screening techniques, there are now unprecedented opportunities to understand and overcome drug resistance through the clinical assessment of rational therapeutic drug combinations and the use of predictive biomarkers to enable patient stratification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ni/K-MgO-ZrO catalysts for dry reforming of methane, with a range of Mg/Zr ratios and each containing about 10 wt% Ni, were prepared via Ni nitrate impregnation on MgO-ZrO supports synthesized by co-precipitation using KCO. It was found that a proportion of the potassium of the precipitant remained in the samples and improved the stability of the catalysts in the reaction. It was also shown that reduction of the catalysts at 1,023 K without calcination in air is necessary for stable and high activity; calcination in air at 1,073 K gives a deterioration of the catalytic properties, leading to rapid deactivation during the reaction. The order of the CH conversions of the reduced catalysts after 14 h on stream was as follows: Ni/K-MgZr ~ Ni/K-Mg ≥ Ni/K-MgZr Ni/K-Zr. A catalyst with 0.95 wt% K on MgO-ZrO with a Mg:Zr mole ratio of 5:2 showed the best resistance to deactivation. Experiments in a microbalance system showed that there was only negligible coke deposition on the surface of this sample. This behaviour was attributed to the presence of Ni nanoparticles with a diameter of less than 10 nm located on a MgO/NiO solid solution shell doped by K ions; this in turn covers a core of tetragonal ZrO and/or a MgO/ZrO solid solution. This conclusion was supported by EDS/TEM, XPS, XRD and H chemisorption measurements. © 2013 Springer Science+Business Media New York.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, three different elastomers, namely hydrogenated nitrile butadiene rubber, fluoroelastomer and silicone, have been subjected to two different hard metallised coatings by ion implantation process. The three different elastomers are commonly used in various seal applications, where reduced wear and gas permeability are essential in maintaining seal performance and functionality. Samples of these rubbers have been coated with chromium coating in one set of tests. In the second set of tests, samples of elastomers have been coated with tungsten carbide coating being deposited on all the three different elastomers. Wear, gas permeability and mechanical behaviour of the coated samples were compared with each other and with the control uncoated elastomers. All the coated samples showed good reduction in gas permeability. With the use of metallised coatings, there has been improved resistance to wear in all the coated samples. Adhesion strength and effect of coating on the elastomer have been investigated by mechanical testing. Mechanical tests revealed good adhesion of metal coatings on all the rubber samples, and there was no detrimental effect on the mechanical properties after coating. © 2012 Institute of Materials, Minerals and Mining.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The increasing prevalence of bovine tuberculosis (bTB) in the UK and the limitations of the currently available diagnostic and control methods require the development of complementary approaches to assist in the sustainable control of the disease. One potential approach is the identification of animals that are genetically more resistant to bTB, to enable breeding of animals with enhanced resistance. This paper focuses on prediction of resistance to bTB. We explore estimation of direct genomic estimated breeding values (DGVs) for bTB resistance in UK dairy cattle, using dense SNP chip data, and test these genomic predictions for situations when disease phenotypes are not available on selection candidates. Methodology/Principal Findings: We estimated DGVs using genomic best linear unbiased prediction methodology, and assessed their predictive accuracies with a cross validation procedure and receiver operator characteristic (ROC) curves. Furthermore, these results were compared with theoretical expectations for prediction accuracy and area-under-the-ROC- curve (AUC). The dataset comprised 1151 Holstein-Friesian cows (bTB cases or controls). All individuals (592 cases and 559 controls) were genotyped for 727,252 loci (Illumina Bead Chip). The estimated observed heritability of bTB resistance was 0.23±0.06 (0.34 on the liability scale) and five-fold cross validation, replicated six times, provided a prediction accuracy of 0.33 (95% C.I.: 0.26, 0.40). ROC curves, and the resulting AUC, gave a probability of 0.58, averaged across six replicates, of correctly classifying cows as diseased or as healthy based on SNP chip genotype alone using these data. Conclusions/Significance: These results provide a first step in the investigation of the potential feasibility of genomic selection for bTB resistance using SNP data. Specifically, they demonstrate that genomic selection is possible, even in populations with no pedigree data and on animals lacking bTB phenotypes. However, a larger training population will be required to improve prediction accuracies. © 2014 Tsairidou et al.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Metronidazole is the most commonly used antimicrobial for Bacteroides fragilis infections and is recommended for prophylaxis of colorectal surgery. Metronidazole resistance is increasing and the mechanisms of resistance are not clear.

Methods A transposon mutant library was generated in B. fragilis 638R (BF638R) to identify the genetic loci associated with resistance to metronidazole.

Results Thirty-two independently isolated metronidazole-resistant mutants had a transposon insertion in BF638R_1421 that encodes the ferrous transport fusion protein (feoAB). Deletion of feoAB resulted in a 10-fold increased MIC of metronidazole for the strain. The metronidazole MIC for the feoAB mutant was similar to that for the parent strain when grown on media supplemented with excess iron, suggesting that the increase seen in the MIC of metronidazole was due to reduced cellular iron transport in the feoAB mutant. The furA gene repressed feoAB transcription in an iron-dependent manner and disruption of furA resulted in constitutive transcription of feoAB, regardless of whether or not iron was present. However, disruption of feoAB also diminished the capacity of BF638R to grow in a mouse intraperitoneal abscess model, suggesting that inorganic ferrous iron assimilation is essential for B. fragilis survival in vivo.

Conclusions Selection for feoAB mutations as a result of metronidazole treatment will disable the pathogenic potential of B. fragilis and could contribute to the clinical efficacy of metronidazole. While mutations in feoAB are probably not a direct cause of clinical resistance, this study provides a key insight into intracellular metronidazole activity and the link with intracellular iron homeostasis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The pleiotropic effects of host defence peptides (HDPs), including the ability to kill microorganisms, enhance re-epithelialisation and increase angiogenesis, indicates a role for these important peptides as potential therapeutic agents in the treatment of chronic, non-healing wounds. However, the maintenance of peptide integrity, through resistance to degradation by the array of proteinases present at the wound site, is a prerequisite for clinical success. In this study we explored the degradation of exogenous LL-37, one such HDP, by wound fluid from diabetic foot ulcers to determine its susceptibility to proteolytic degradation. Our results suggest that LL-37 is unstable in the diabetic foot ulcer microenvironment. Following overnight treatment with wound fluid, LL-37 was completely degraded. Analysis of cleavage sites suggested potential involvement of both host- and bacterial-derived proteinases. The degradation products were shown to retain some antibacterial activity against Pseudomonas aeruginosa but were inactive against Staphylococcus aureus. In conclusion, our data suggest that stabilising selected peptide bonds within the sequence of LL-37 would represent an avenue for future research prior to clinical studies to address its potential as an exogenously-applied therapeutic in diabetic wounds. 

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several neurodevelopmental disorders are associated with preference for routine and challenging behavior following changes to routines. We examine individuals with Prader–Willi syndrome, who show elevated levels of this behavior, to better understand how previous experience of a routine can affect challenging behavior elicited by disruption to that routine. Play based challenges exposed 16 participants to routines, which were either adhered to or changed. Temper outburst behaviors, heart rate and movement were measured. As participants were exposed to routines for longer before a change (between 10 and 80 min; within participants), more temper outburst behaviors were elicited by changes. Increased emotional arousal was also elicited, which was indexed by heart rate increases not driven by movement. Further study will be important to understand whether current intervention approaches that limit exposure to changes, may benefit from the structured integration of flexibility to ensure that the opportunity for routine establishment is also limited.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Paclitaxel is a microtubule inhibitory chemotherapeutic drug that is increasingly used for the treatment of solid tumours. In vitro studies have demonstrated that attenuating the spindle assemble checkpoint (SAC) alters the post-mitotic responses to paclitaxel. Furthermore, the aberrant expression of a number of the SAC proteins, MAD2, BUBR1, and Aurora A kinase, are associated with poor patient prognosis. We have identified a microRNA, miR-433, that regulates the expression of MAD2. Overexpression of miR-433 in Hela cells induced downregulation of MAD2 mRNA and protein expression. We have also shown that Hela cells overexpressing miR-433 and treated with paclitaxel are no longer capable of cyclin B stabilisation, and thus have lost the ability to activate the SAC in response to paclitaxel. In addition, cell viability assays showed that Hela cells overexpressing miR-433 and treated with paclitaxel have an attenuated response to paclitaxel compared with microRNA scrambled controls. We have characterised the levels of miR-433, MAD2 gene expression and MAD2 protein levels in a cohort of ovarian cancer cell lines. Cell viability assays on this cohort revealed that responsiveness to paclitaxel is associated with high MAD2 protein expression and lower miR-433 expression. We hypothesise that the expression of miR-433 when deregulated in cancer leads to altered MAD2 expression and a compromised SAC, a key feature underlying drug resistance to paclitaxel. In a pilot study of paired human breast tumour and normal breast tissue samples we have shown that expression levels of miR-433 are elevated in cancer tissue. Targeting this microRNA in cancer may improve the efficacy of paclitaxel in treating breast cancer and ovarian cancer.