146 resultados para GAUZE CATALYSTS
Resumo:
The impact of the preparation method on the activity and stability of gold supported on ceria-zirconia low temperature water-gas shift (WGS) catalysts have been investigated. The influence of the gold deposition method, nature of the gold precursor, nature of the washing solution, drying method, Ce: Zr ratio of the support and sulfation of the support have been evaluated. The highest activity catalysts were obtained using a support with a Ce: Zr mole ratio 1: 1, HAuCl4 as the gold precursor deposited via deposition precipitation using sodium carbonate as the precipitation agent and the catalyst washed with water or 0.1 M NH4OH solution. In addition, the drying used was found to be critical with drying under vacuum at room temperature found to be most effective.
Resumo:
Tetrahexahedral Pt nanocrystals (THH Pt NCs) bound by well-defined high index crystal planes offer exceptional electrocatalytic activity, owing to a high density of low-coordination surface Pt sites. We report, herein, on methanol electrooxidation at THH Pt NC electrodes studied by a combination of electrochemical techniques and in situ FTIR spectroscopy. Pure THH Pt NC surfaces readily facilitate the dissociative chemisorption of methanol leading to poisoning by strongly adsorbed CO. Decoration of the stepped surfaces by Ru adatoms increases the tolerance to poisoning and thereby reduces the onset potential for methanol oxidation by over 100 mV. The Ru modified THH Pt NCs exhibit greatly superior catalytic currents and CO2 yields in the low potential range, when compared with a commercial PtRu alloy nanoparticle catalyst. These results are of fundamental importance in terms of model nanoparticle electrocatalytic systems of stepped surfaces and also have practical significance in the development of surface tailored, direct methanol fuel cell catalysts.
Resumo:
Mesoporous silica grown using [3-(trimethoxysilyl)propyl]octadecyldimethylammonium chloride as the mesoporogen in the presence of Fe and Al is X-ray amorphous, but contains very small domains with features of MFI zeolite as evidenced by IR and Raman spectroscopy. When applied as a catalyst, this amorphous sample shows good performance in the selective oxidation of benzene using nitrous oxide. Addition of tetrapropylammonium as structure directing agent to the as-synthesized mesoporous silica and subsequent dry gel conversion results in the formation of hierarchical Fe/ZSM-5 zeolite. During dry gel conversion the wormhole mesostructure of the initial material is completely lost. A dominant feature of the texture after crystallization is the high interconnectivity of micropores and mesopores. Substantial redistribution of low-dispersed Fe takes place during dry gel conversion towards highly dispersed isolated Fe species outside the zeolite framework. The catalytic performance in the oxidation of benzene to phenol of these highly mesoporous zeolites is appreciably higher than that of the parent material.
Resumo:
MIL-101, a chromium-based metal-organic framework, is known for its very large pore size, large surface area and good stability. However, applications of this material in catalysis are still limited. 5-Hydroxymethylfurfural (HMF) has been considered a renewable chemical platform for the production of liquid fuels and fine chemicals. Phosphotungstic acid, H3PW12O40 (PTA), encapsulated in MIL-101 is evaluated as a potential catalyst for the selective dehydration of fructose and glucose to 5-hydroxymethylfurfural. The results demonstrate that PTA/MIL-101 is effective for HMF production from fructose in DMSO and can be reused. This is the first example of the application of a metal-organic framework in carbohydrate dehydration.
Resumo:
Zirconia modified SBA-15 becomes a very active catalyst for the selective hydrolysis of cellobiose to glucose after sulfation. Spectroscopic investigations indicate the presence of Bronsted acid sites with similar properties to those present in conventional sulfated zirconia. Indications are found that the sulfate groups attached to zirconia interact with silanol groups of SBA-15. The catalytic activity in cellobiose hydrolysis correlates well with results for temperature-programmed decomposition of i-propylamine for a range of sulfated ZrO2/SBA-15 catalysts. A glucose yield of 60% during cellobiose hydrolysis at a reaction time of 90 min at 160 degrees C is obtained.
Resumo:
Methane activation via bromination can be a feasible route with selective synthesis of mono-bromomethane. It is known that the condensation of brominated products into higher hydrocarbons can result in coking and deactivation in the presence of di-bromomethane. In this study, selective production of methyl bromide was investigated over sulfated ZrO2 included SBA-15 structures. It was observed that the higher the ZrO2 amounts the higher the conversion, while the catalyst remained >99% selective for the monobrominated methane. Over 25 mol.% ZrO2 included SBA-15 catalyst with a BET surface area of 246 m(2)/g, methane was brominated with 69% conversion at 340 degrees C and only CH3Br was selectively produced. (C) 2009 Elsevier B.V. All rights reserved
Resumo:
The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.
Chiral supported ionic liquid phase (CSILP) catalysts for greener asymmetric hydrogenation processes
Resumo:
Chiral supported ionic liquid phase (CSILP) catalysts were prepared by physical adsorption (within highly porous carbons or mesoporous silica) of Ir, Ru and Rh complexes as IrCl(COD)-(S, S)-BDPP, [IrCl-(S)-BINAP](2), RuCl(p-cymene)[(S, S)-Ts-DPEN], RuOTf(p-cymene)[(S, S)-Ts-DPEN], [Rh(COD)(S, S)-DIPAMP][BF4], and [Rh(COD)(R, R)-Me-DuPHOS][BF4]. For the syntheses of CSILP catalysts [EMIM][NTf2], [BMIM][BF4] and [BMIM][PF6] ionic liquids were used. Comparative homogeneous and heterogeneous experiments were carried out using the asymmetric hydrogenation of double -C N- and -C C- bonds in trimethylindolenine, 2-methylquinoline and dimethylitaconate, respectively. The conversion and enantioselectivity was found to depend on the nature of the complex (metal and ligand), the immobilization method used, nature of the ionic liquid, nature of the support and the experimental conditions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
By depositing ceria over supported precious metal (PM) catalysts and characterizing them with in situ diffuse reflectance UV (DR UV) and in situ Raman spectroscopy, we have been able to prove a direct correlation between a decrease in ceria band gap and the work function of the metal under reducing conditions. The PM ceria interaction results in changes on the ceria side of the metal ceria interface, such that the degree of oxygen vacancy formation on the ceria surface also correlates with the precious metal work function. Nevertheless, conclusive evidence for a purely electronic interaction could not be provided by X-ray photoelectron spectroscopy (XPS) analysis. On the contrary, the results highlight the complexity of the PM ceria interaction by supporting a spillover mechanism resulting from the electronic interaction under reducing conditions. Under oxidizing conditions, another effect has been observed; namely, a structural modification of ceria induced by the presence of PM cations. In particular, we have been able to demonstrate by in situ Raman spectroscopy that, depending on the PM ionic radius, it is possible to create PM ceria solid solutions. We observed that this structural modification prevails under an oxidizing atmosphere, whereas electronic and chemical interactions take place under reducing conditions.
Resumo:
Electrodeposition of metals onto conductive supports such as graphite potentially provides a lower-waste method to form heterogeneous catalysts than the standard methods such as wet impregnation. Copper electrodeposition onto pressed graphite disc electrodes was investigated from aqueous CuSO4-ethylenediamine solutions by chronoamperometry with scanning electron microscopy used to ascertain the particle sizes obtained by this method. The particle size was studied as a function of pH, CuSO4-ethylenediamine concentration, and electrodeposition time. It was observed that decreasing the pH, copper-ethylenediamine concentration and time each decreased the size of the copper particles observed, with the smallest obtained being around 5-20 nm. Furthermore, electroless aerobic oxidation of copper metal in the presence of ethylenediamine was successfully coupled with the electrodeposition in the same vessel. In this way, deposition was achieved sequentially on up to twenty different graphite discs using the same ethylenediamine solution, demonstrating the recyclability of the ligand. The materials thus prepared were shown to be catalytically active for the mineralisation of phenol by hydrogen peroxide. Overall, the results provide a proof-of-principle that by making use of aerobic oxidation coupled with electrochemical deposition, elemental base metals can be used directly as starting materials to form heterogeneous catalysts without the need to use metal salts as catalyst precursors.
Resumo:
Low-temperature (<200 degrees C) hydrocarbon selective catalytic reduction of NOx has been achieved for the first time in the absence of hydrogen using a solvent-free mechanochemically prepared Ag/Al2O3 catalyst. Catalysts prepared by this ball-milling method show a remarkable increase in activity for the reduction of nitrogen oxides with octane by lowering the light-off temperature by up to 150 degrees C compared with a state-of-the-art 2 wt %Ag/Al2O3 catalyst prepared by wet impregnation. The best catalyst prepared from silver oxide showed 50% NOx conversion at 240 degrees C and 99%, at 302 degrees C. The increased activity is not due to an increased surface area of the support, but may be associated with a change in.the'defeet structure of the alumina surface, leading to the formation of the small silver clusters necessary for the activation of the octane without leading to total combustion. On the other hand, since one possible role of hydrogen is to remove inhibiting species from the silver, we cannot exclude some change in the chemical properties of the silver as a result of the ball-milling treatment.
Resumo:
The deactivation of a silver-based hydrocarbon selective catalytic reduction catalyst by SOx and the subsequent regeneration under various operating conditions has been investigated. Using a sulfur trap based on a silica-supported catalyst it was found that, for a Ag/SiO2 + Ag/Al2O3 combination, the negative effect of SO2 on the n-octane-SCR reaction can be eliminated under normal operating conditions. The trap can be regenerated by hydrogen at low temperatures or at higher temperatures using a hydrocarbon reductant.
Resumo:
In situ EXAFS has been used to examine the hydrogen effect on the selective catalytic reduction of NOx over silver/alumina catalysts. For all SCR conditions used, with or without co-reductant (H-2 or CO), the catalyst structure remained the same. Significant changes in the catalyst were only found under reducing conditions. The enhanced activity found in the presence of hydrogen is thought to be due to a chemical effect and not the result of a change in the structure of the active site.
Resumo:
Heterogeneous catalytic oxidation of a series of thioethers (2-thiomethylpyrimidine, 2-thiomethyl-4,6-dimethyl-pyrimidine, 2-thiobenzylpyrimidine, 2-thiobenzyl-4,6-dimethylpyrimidine, thioanisole, and n-heptyl methyl sulfide) was performed in ionic liquids by using MCM-41 and UVM-type mesoporous catalysts containing Ti, or Ti and Ge. A range of triflate, tetrafluoroborate, trifluoroacetate, lactate and bis(trifluoromethanesulfonyl)imide-based ionic liquids were used. The oxidations were carried out by using anhydrous hydrogen peroxide or the urea-hydrogen peroxide adduct and showed that ionic liquids are very effective solvents, achieving greater reactivity and selectivity than reactions performed in dioxane. The effects of halide and acid impurities on the reactions were also investigated. Recycling experiments on catalysts were carried out in order to evaluate Ti leaching and its effect on activity and selectivity.