112 resultados para G.1.6 Optimization
Resumo:
The water and wastewater industry in the UK accounts for around 3% of total energy use and just over 1% of total UK greenhouse gas emissions. Targets for greenhouse gas emissions reduction and higher renewable energy penetration, coupled with rising energy costs, growing demand for wastewater services and tightening EU water quality requirements, have led to an increased interest in alternative wastewater treatment methods. The use of short rotation coppice (SRC) willow for the treatment of wastewater effluent is one such alternative, which brings with it the dual benefits of wastewater treatment and production of biomass for energy. In order to assess the effectiveness of SRC willow, it is important to analyse the overall energy balance in terms of energy input versus energy output. This paper carries out an energy life cycle analysis of a specific SRC willow plantation in Northern Ireland to which farmyard washings (dirty water) are applied. The system boundaries include the establishment, maintenance, and harvesting of the plantation, along with the transport and drying of the wood for biomass combustion. The analysis shows that the overall energy balance is positive, and that the direct and indirect energy demands are 12% and 8% of gross energy production respectively. The energy demands of the plantation are compared with the energy required to treat an equivalent nutrient load in a conventional wastewater treatment plant. While a conventional plant consumes 2.6 MJ/m3 , the irrigation system consumes 1.6 MJ/m3 and the net energy production of the scenario is 48 MJ/m3 .
Resumo:
Recently, we described a series of novel porphyrin-impregnated hydrogels capable of producing microbicidal singlet oxygen (1O2) on photoactivation. Indirect assessment of the efficacy of 1O2 production from such hydrogels has been previously described using microbiological techniques, but here we report a novel, direct method of quantification. Anthracene-9,10-dipropionic acid (ADPA) is known to irreversibly form an endoperoxide on reaction with 1O2, causing photobleaching of its absorbance band at approximately 378 nm. Here, the reaction of this probe is exploited in a novel way to provide a simple, inexpensive, and convenient measurement of 1O2 generation from the surface of porphyrin-incorporated photosensitising hydrogels, with the ability to account for effects due to hydrogel porosity. Ingress of the probe into the materials was observed, with rates of up to 3.83 x 103 s-1. This varied by up to 200-fold with material composition and surface modification. Rates of 1O2 generation in these porphyrin-incorporated hydrogels, after compensating for ADPA ingress, ranged from 1.86x103 – 5.86x103 s-1. This work demonstrates a simple and straightforward method for direct 1O2 quantification from porous materials, with general utility.
Resumo:
Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs () across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of complex-disease architectures. Across the 11 diseases DNaseI hypersensitivity sites (DHSs) from 217 cell types spanned 16% of imputed SNPs (and 24% of genotyped SNPs) but explained an average of 79% (SE = 8%) of from imputed SNPs (5.1× enrichment; p = 3.7 × 10−17) and 38% (SE = 4%) of from genotyped SNPs (1.6× enrichment, p = 1.0 × 10−4). Further enrichment was observed at enhancer DHSs and cell-type-specific DHSs. In contrast, coding variants, which span 1% of the genome, explained <10% of despite having the highest enrichment. We replicated these findings but found no significant contribution from rare coding variants in independent schizophrenia cohorts genotyped on GWAS and exome chips. Our results highlight the value of analyzing components of heritability to unravel the functional architecture of common disease.
Resumo:
A procedure was developed to extract polyols and trehalose (protectants against stress) from fungal conidia. Conidia were sonicated (120 s) and immersed in a boiling water bath (5.5 min) to optimize extraction of polyols and trehalose, respectively. A rapid method was developed to separate and detect low-molecular-weight polyols and trehalose using high-performance liquid chromatography (HPLC). An ion exchange column designed for standard carbohydrate analysis was used in preference to one designed for sugar alcohol separation. This resulted in rapid elution (less than 5 min), without sacrificing peak resolution. The use of a pulsed electrochemical detector (gold electrode) resulted in limits of reliable quantification as low as 1.6 μg ml-1 for polyols and 2.8 μg ml-1 for trehalose. This is very sensitive and rapid method by which these protectants can be analysed. It avoids polyol derivatization that characterizes analysis by gas chromatography and the long run times (up to 45 min) that typify HPLC analysis using sugar alcohol columns.
Resumo:
The insect pathogen Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosos can be effective biocontrol agents when relative humidity (RH) is close to 100%. At reduced water availability, germination of propagules, and therefore host infection, cannot occur. Cultures of B. bassiana, M. anisopliae and P. farinosus were grown under different conditions to obtain conidia with a modified polyol and trehalose content. Conidia with higher intracellular concentrations of glycerol and erythritol germinated both more quickly and at lower water activity (a(w)) than those from other treatments. In contrast, conidia containing up to 235.7 mg trehalose g-1 germinated significantly (P < 0 05) more slowly than those with an equivalent polyol content but less trehalose, regardless of water availability. Conidia from control treatments did not germinate below 0.951 - 0.935 a(w) (≡ 95.1 - 93.5% RH). In contrast, conidia containing up to 164.6 mg glycerol plus erythritol g-1 germinated down to 0.887 a(w) (≡ 88.7% RH). These conidia germinated below the water availability at which mycelial growth ceases (0.930 - 0.920 a(w)). Germ tube extension rates reflected the percentage germination of conidia, so the most rapid germ tube growth occurred after treatments which produced conidia containing the most glycerol and erythritol. This study shows for the first time that manipulating polyol content can extend the range of water availability over which fungal propagules can germinate. Physiological manipulation of conidia may improve biological control of insect pests in the field.
Resumo:
Burkholderia cepacia infection in cystic fibrosis (CF) patients is associated with significant morbidity and mortality, yet no definitive treatment is currently available. This report describes a new approach to treat B. cepacia infection in CF patients, using a combination of amiloride and tobramycin aerosols. Four adults with the typical clinical syndrome of CF were recruited after repeated positive sputum cultures for B. cepacia. Aerosols of amiloride and tobramycin were given three times daily for 1-6 months, and repeated sputum cultures were collected to assess efficacy. Three of the four patients treated with the combined therapy eradicated B. cepacia from their sputum cultures for at least 2 yrs, and there were no adverse events. This novel combination may provide a new therapeutic option for Burkholderia cepacia infections. Furthermore, the strategy of combining antibiotics with ion transport agents may have ramifications for the treatment of other multi-resistant organisms.
Resumo:
OBJECTIVES: The aim of this study was to compare the impact of two different tooth replacement strategies on the nutritional status of partially dentate older patients. Nutritional status was measured using the full version of the Mini Nutritional Assessment (MNA) and the short form of the Mini Nutritional Assessment (MNA-SF).
MATERIALS AND METHODS: A randomised controlled clinical trial was conducted (Trial Registration no. ISRCTN26302774). Partially dentate patients aged 65 years and older were recruited and randomly allocated to the two different treatment groups: the removable partial dentures (RPD) group and the shortened dental arch (SDA) group. Nutritional status was measured using the MNA and MNA-SF administered at baseline and 1, 6 and 12 months after treatment intervention by a research nurse blinded to the treatment group allocation of all participants.
RESULTS: Data collected using the full version of the MNA showed significant improvements in mean MNA scores over the length of the study (p < 0.05). For the entire patient group, there was a mean increase of 0.15 points at 6 months and a further increase of 0.19 points at 12 months. These increases were similar within the treatment groups (p > 0.05). For MNA-SF, the analysis showed that there were no significant differences recorded over the data collection points after treatment intervention (p < 0.05).
CONCLUSION: Tooth replacement using conventional and functionally orientated treatment for the partially dentate elderly showed significant improvements in MNA score 12 months after intervention.
CLINICAL RELEVANCE: Prosthodontic rehabilitation may play an important role in the nutritional status of partially dentate elders.
Resumo:
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
Resumo:
Arsenate and arsenite sensitivity and arsenate influx tests were conducted for two rice cultivars of different arsenic sensitivity. Azucena and Bala. These were to establish if the mechanism of reduced arsenic sensitivity is achieved through an altered phosphate uptake system, as shown for Holcus lanatus. High phosphate treatments (>= 50 mu M) provided protection against both arsenate and arsenite. Unlike the H. lanatus tolerance mechanism, in the less sensitive cultivar Bala, arsenate influx did not decrease with phosphate treatment and phosphate transporters appeared to be constitutively upregulated; V(max) for arsenate influx remain similar when Bala was grown in the presence or absence of phosphate (V(max) - 0.90 and 0.63 nmol g(-1) f.wt min(-1) respectively). Although mean K(m) appear different, Bala did not show lower affinity to arsenate than Azucena in the absence of phosphate (K(m) - Azucena, 0.30 mM and Bala, 0.18), while in phosphate treatment, Bala arsenate affinity was half that observed for Azucena (K(m) - Azucena, 0.14 and Bala, 0.36 mM). These were low compared to a 4 and 6 fold decrease seen for similar studies on H. lanatus in the absence and presence of phosphate. Phosphate-induced arsenic protection was observed but the mechanism does not resemble that of H. lanatus. Alternative mechanisms were discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a hybrid BDI-PGM framework, in which PGMs (Probabilistic Graphical Models) are incorporated into a BDI (belief-desire-intention) architecture. This work is motivated by the need to address the scalability and noisy sensing issues in SCADA (Supervisory Control And Data Acquisition) systems. Our approach uses the incorporated PGMs to model the uncertainty reasoning and decision making processes of agents situated in a stochastic environment. In particular, we use Bayesian networks to reason about an agent’s beliefs about the environment based on its sensory observations, and select optimal plans according to the utilities of actions defined in influence diagrams. This approach takes the advantage of the scalability of the BDI architecture and the uncertainty reasoning capability of PGMs. We present a prototype of the proposed approach using a transit scenario to validate its effectiveness.
Resumo:
A mutant strain (UV4) of the soil bacterium Pseudomonas putida, containing toluene dioxygenase, has been used in the metabolic oxidation of 1,2-dihydrobenzocyclobutene 12 dagger and the related substrates 1,2-dihydrobenzocyclobuten-1-ol 13 and biphenylene 33. Stable angular cis-monohydrodiol metabolites (1R,2S)-bicyclo[4.2.0]octa-3,5-diene-1,2 7, (1S,2S,8S)-bicyclo[4.2.0]octa-3,5-diene-1,2,8-triol 8 and biphenylene-cis-1,8b-diol 9, isolated from each of these substrates, have been structurally and stereochemically assigned. The structure, enantiopurity and absolute configuration of the other cis-diol metabolites, (2R,3S)-bicyclo[4.2.0]octa-1(6),4-diene-2,3-diol 14 and cis-1,2-dihydroxy-1,2-dihydrobenzocyclobutene 16, and the benzylic oxidation bioproducts, 1,2-dihydrobenzocyclobuten-1-ol 13, 1,2-dihydrobenzocyclobuten-1-one 15 and 2-hydroxy-1,2-dihydrobenzocyclobuten-1-one 17, obtained from 1,2-dihydrobenzocyclobutene and 1,2-dihydrobenzocyclobuten-1-ol, have been determined with the aid of chiral stationary-phase HPLC, NMR and CD spectroscopy, and stereochemical correlation. X-Ray crystallographic methods have been used in the determination of absolute configuration of the di-camphanates 27 (from diol 7) and 32 (from diol 9), and the di-MTPA ester 29 (from diol 14) of the corresponding cis-diol metabolites. The metabolic sequence involved in the formation of bioproducts derived from 1,2-dihydrobenzocyclobutene 12 has been investigated.
Resumo:
We present the results of a photometric and spectroscopic monitoring campaign of SN 2012ec, which exploded in the spiral galaxy NGC 1084, during the photospheric phase. The photometric light curve exhibits a plateau with luminosity L = 0.9 x 10(42) erg s(-1) and duration similar to 90 d, which is somewhat shorter than standard Type II-P supernovae (SNe). We estimate the nickel mass M(Ni-56) = 0.040 +/- 0.015 M-circle dot from the luminosity at the beginning of the radioactive tail of the light curve. The explosion parameters of SN 2012ec were estimated from the comparison of the bolometric light curve and the observed temperature and velocity evolution of the ejecta with predictions from hydrodynamical models. We derived an envelope mass of 12.6 M-circle dot, an initial progenitor radius of 1.6 x 10(13) cm and an explosion energy of 1.2 foe. These estimates agree with an independent study of the progenitor star identified in pre-explosion images, for which an initial mass of M = 14-22 M-circle dot was determined. We have applied the same analysis to two other Type II-P SNe (SNe 2012aw and 2012A), and carried out a comparison with the properties of SN 2012ec derived in this paper. We find a reasonable agreement between the masses of the progenitors obtained from pre-explosion images and masses derived from hydrodynamical models. We estimate the distance to SN 2012ec with the standardized candle method (SCM) and compare it with other estimates based on other primary and secondary indicators. SNe 2012A, 2012aw and 2012ec all follow the standard relations for the SCM for the use of Type II-P SNe as distance indicators.
Hydrogen-Poor Superluminous Supernovae and Long-Duration Gamma-Ray Bursts Have Similar Host Galaxies
Resumo:
We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 ≲ z ≲ 1.6, and is the first comprehensive host galaxy study of this specific subclass of cosmic explosions. Combining the multi-band photometry and emission-line measurements, we determine the luminosities, stellar masses, star formation rates, and metallicities. We find that, as a whole, the hosts of SLSNe are a low-luminosity (〈MB 〉 ≈ -17.3 mag), low stellar mass (〈M〉 ≈ 2 × 108 M⊙) population, with a high median specific star formation rate (〈sSFR〉 ≈ 2 Gyr-1). The median metallicity of our spectroscopic sample is low, 12 + log (O/H) ≈ 8.35 ≈ 0.45 Z⊙, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR, and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly spinning magnetar in SLSNe and an accreting black hole in LGRBs.
Resumo:
A study was undertaken to determine the effects of different concentrations of arsenic (As) in irrigation water on Boro (dry-season) rice (Oryza sativa) and their residual effects on the following Aman (wet-season) rice. There were six treatments, with 0, 0.1, 0.25, 0.5, 1, and 2 mg As L-1 applied as disodium hydrogen arsenate. All the growth and yield parameters of Boro rice responded positively at lower concentrations of up to 0.25 mg As L-1 in irrigation water but decreased sharply at concentrations more than 0.5 mg As L-1. Arsenic concentrations in grain and straw of Boro rice increased significantly with increasing concentration of As in irrigation water. The grain As concentration was in the range of 0.25 to 0.97 μg g-1 and its concentration in rice straw varied from 2.4 to 9.6 μg g-1 over the treatments. Residual As from previous Boro rice showed a very similar pattern in the following Aman rice, although As concentration in Aman rice grain and straw over the treatments was almost half of the As levels in Boro rice grain. Arsenic concentrations in both grain and straw of Boro and Aman rice were found to correlate with iron and be antagonistic with phosphorus. Copyright © Taylor & Francis Group, LLC.