94 resultados para Fine Particulates
Resumo:
Effective collision strengths for electron-impact excitation of the N-like ion S x are calculated in the close-coupling approximation using the multichannel R-matrix method. Specific attention is given to the 10 astrophysically important fine-structure forbidden transitions among the 4SO, 2Do and 2Po levels in the 2s22p3 ground configuration. The total (e- + ion) wavefunction is expanded in terms of the 11 lowest LS eigenstates of S x, and each eigenstate is represented by extensive configuration-interaction wavefunctions. The collision strengths obtained are thermally averaged over a Maxwellian distribution of velocities, for all 10 fine-structure transitions, over the range of electron temperatures log T(K) = 4.6-6.7 (the range appropriate for astrophysical applications). The present effective collision strengths are the only results currently available for these fine-structure transition rates.
Resumo:
Effective collision strengths for electron-impact excitation of the N-like ion NeIV are calculated in the close-coupling approximation using the multichannel R-matrix method. Specific attention is given to the 10 astrophysically important fine-structure forbidden transitions among the 4So, 2Do and 2Po levels in the 2s22p3 ground-state configuration. The expansion of the total wavefunction incorporates the lowest 11 LS eigenstates of NeIV, consisting of eight n = 2 terms with configurations 2s22p3, 2s2p4 and 2p5, together with three n = 3 states of configuration 2s22p23s. We present in graphical form the effective collision strengths obtained by thermally averaging the collision strengths over a Maxwellian distribution of velocities, for all 10 fine-structure transitions, over the range of electron temperatures log T(K) = 3.6 to log T(K) = 6.1 (the range appropriate for astrophysical applications). Comparisons are made with the earlier, less sophisticated close-coupling calculation of Giles, and excellent agreement is found in the limited temperature region where a comparison is possible [log T(K) = 3.7 to log 7(K) = 4.3]. At higher temperatures the present data are the only reliable results currently available.
Resumo:
The multichannel R-matrix method is used to compute electron impact excitation collision strengths in Ar IV for all fine-structure transitions among the 4S°, 2D° and 2P° levels in the 3s 23p 3 ground configuration. Included in the expansion of the total wavefunction are the lowest 13 LS target eigenstates of Ar iv formed from the 3s 23p 3, 3s3p 4 and 3s 23p 23d configurations. The effective collision strengths, obtained by averaging the electron collision strengths over a Maxwellian distribution of electron velocities, are presented for all 10 fine-structure transitions over a wide range of electron temperatures of astrophysical interest (T e = 2000-100 000 K). Comparisons are made with an earlier 7-state close-coupling calculation by Zeippen, Butler & Le Bourlot, and significant differences are found to occur for many of the forbidden transitions considered, in particular those involving the 4S° ground state, where discrepancies of up to a factor of 3 are found in the low-temperature region. © 1997 RAS.
Resumo:
The British standard constant-head triaxial test for measuring the permeability of fine-grained soils takes a relatively long time. A quicker test could provide savings to the construction industry, particularly for checking the quality of landfill clay liners. An accelerated permeability test has been developed, but the method often underestimates the permeability values compared owing to structural changes in the soil sample. This paper reports on an investigation
into the accelerated test to discover if the changes can be limited by using a revised procedure. The accelerated test is assessed and compared with the standard test and a ramp-accelerated permeability test. Four different finegrained materials are compacted at various water contents to produce analogous samples for testing using the three different methods. Fabric analysis is carried out on specimens derived from post-test samples using mercury intrusion porosimetry and scanning electron microscopy to assess the effects of testing on soil structure. The results show that accelerated testing in general underestimates permeability compared with values derived from the standard test, owing to changes in soil structure caused by testing. The ramp-accelerated test is shown to provide an improvement in terms of these structural changes.