151 resultados para Fe:YAP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dealuminated beta zeolites exchanged with Pd and Fe were prepared to investigate the influence of iron and dealumination on the activity and selectivity of Pd/BEA zeolite for toluene total oxidation. The specific areas determined by BET method and EPR studies allowed to know that the palladium would be more easily agglomerated on the BEA than on the DBEA. Moreover, a quantification of the palladium saturation on the BEA zeolite was deduced by EPR. Effects of dynamic and static oxidation and weak and strong reduction treatments were studied by EPR. Several isolated and interacted Pd+ species and hole centers were detected. The Pd was much reduced after the catalytic test in dealuminated and Fe doped samples. This result could be directly correlated to the catalytic deactivation. The deactivation could be also explain by the type of coke deposed on the catalyst and by the hydroscopic behavior of the samples. Addition of Fe or dealumination could prevent the deactivation and then lead to better catalysts for VOCs oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical emission-line ratios involving Fe xi transitions in the 257-407 A wavelength range are derived using fully relativistic calculations of radiative rates and electron impact excitation cross-sections. These are subsequently compared with both long wavelength channel Extreme-Ultraviolet Imaging Spectrometer (EIS) spectra from the Hinode satellite (covering 245-291 A) and first-order observations (similar to 235-449 A) obtained by the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS). The 266.39, 266.60 and 276.36 A lines of Fe xi are detected in two EIS spectra, confirming earlier identifications of these features, and 276.36 A is found to provide an electron density (N-e) diagnostic when ratioed against the 257.55 A transition. Agreement between theory and observation is found to be generally good for the SERTS data sets, with discrepancies normally being due to known line blends, while the 257.55 A feature is detected for the first time in SERTS spectra. The most useful Fe xi electron density diagnostic is found to be the 308.54/352.67 intensity ratio, which varies by a factor of 8.4 between N-e = 108 and 1011 cm-3, while showing little temperature sensitivity. However, the 349.04/352.67 ratio potentially provides a superior diagnostic, as it involves lines which are closer in wavelength, and varies by a factor of 14.7 between N-e = 108 and 1011 cm-3. Unfortunately, the 349.04 A line is relatively weak, and also blended with the second-order Fe x 174.52 A feature, unless the first-order instrument response is enhanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absolute doubly differential cross sections have been measured as a function of electron energy and angle of observation for electron emission in collisions of 3.5-MeV/u Fe17+ and Fe22+ ions with He and Ar gas targets under single-collision conditions. The measured electron emission cross sections are compared to theoretical and scaled cross sections based on the Born approximation. The results using intermediate-mass ions are discussed with reference to previously reported cross sections from collisions with highly charged lighter- and heavier-ion species at MeV/u projectile energies. The continuum-distorted-wave-eikonal-initial-state approximation shows good agreement with experiments except in the

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulation of the autoclave manufacturing technique of composites can yield a preliminary estimation of induced residual thermal stresses and deformations that affect component fatigue life, and required tolerances for assembly. In this paper, an approach is proposed to simulate the autoclave manufacturing technique for unidirectional composites. The proposed approach consists of three modules. The first module is a Thermo-chemical model to estimate the temperature and the degree of cure distributions in the composite part during the cure cycle. The second and third modules are a sequential stress analysis using FE-Implicit and FE-Explicit respectively. User-material subroutine is used to model the Viscoelastic properties of the material based on theory of micromechanics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtual manufacturing of composites can yield an initial early estimation of the induced residual thermal stresses that affect component fatigue life, and deformations that affect required tolerances for assembly. Based on these estimation, the designer can make early decisions, which can help in reducing cost, regarding changes in part design or material properties. In this paper, an approach is proposed to simulate the autoclave manufacturing technique for unidirectional composites. The proposed approach consists of three modules. The first module is a Thermochemical model to estimate temperature and the degree of cure distributions in the composite part during the cure cycle. The second and third modules are stress analysis using FE-Implicit and FE-Explicit respectively. User-material subroutine will be used to model the Viscoelastic properties of the material based on micromechanical theory. Estimated deformation of the composite part can be corrected during the autoclave process by modifying the process-tool design. The deformed composite surface is sent to CATIA for design modification of the process-tool.