119 resultados para Fatica, carichi, IEC61400, turbine eoliche
Resumo:
Large scale wind farms are subject to tripping, as a consequence of turbine failure, over-sensitive protection, turbines not equipped with low-voltage ride through (LVRT), and reactive power compensation device defects which can lead to voltage rises. This paper considers pertinent issues which render tripping based on a study of LVRT and wind farm protection, with methods to avoid large scale wind generator tripping proposed. The results of LVRT field tests in Jiuquan, China in December 2012 show that the proposed approaches are effective. The paper also presents work which proposes an early warning system to forecast the risk of wind power tripping.
Resumo:
The doubly-fed induction generator (DFIG) now represents the dominant technology in wind turbine design. One consequence of this is limited damping and inertial response during transient grid disturbances. A dasiadecoupledpsila strategy is therefore proposed to operate the DFIG grid-side converter (GSC) as a static synchronous compensator (STATCOM) during a fault, supporting the local voltage, while the DFIG operates as a fixed-speed induction generator (FSIG) providing an inertial response. The modeling aspects of the decoupled control strategy, the selection of protection control settings, the significance of the fault location and operation at sub- and super-synchronous speeds are analyzed in detail. In addition, a case study is developed to validate the proposed strategy under different wind penetrations levels. The simulations show that suitable configuration of the decoupled strategy can be deployed to improve system voltage stability and inertial response for a range of scenarios, especially at high wind penetration. The conclusions are placed in context of the practical limitations of the technology employed and the system conditions.
Resumo:
This paper proposes a method for wind turbine mode identification using the multivariable output error statespace (MOESP) identification algorithm. The paper incorporates a fast moving window QR decomposition and propagator method from array signal processing, yielding a moving window subspace identification algorithm. The algorithm assumes that the system order is known as a priori and remains constant during identification. For the purpose of extracting modal information for turbines modelled as a linear parameter varying (LPV) system, the algorithm is applicable since a nonlinear system can be approximated as a piecewise time invariant system in consecutive data windows. The algorithm is exemplified using numerical simulations which show that the moving window algorithm can track the modal information. The paper also demonstrates that the low computational burden of the algorithm, compared to conventional batch subspace identification, has significant implications for online implementation.
Resumo:
This paper studies the impact of tower shadow effect on the power output of a fixed-speed wind farm. A data acquisition unit was placed at a wind farm in Northern Ireland which consists of ten fixed-speed wind turbines. The recording equipment logged the wind farmpsilas electrical data, which was time stamped using the global positioning network. Video footage of the wind farm was recorded and from it the blade angle of each turbine was determined with respect to time. Using the blade angle data and the wind farmpsilas power output, studies where performed to ascertain the extent of tower shadow effect on power fluctuation. This paper presents evidence that suggests that tower shadow effect has a significant impact on power fluctuation and that this effect is increased due to the synchronising of turbine blades around the tower region.
Resumo:
The inertia of fixed-speed wind turbine generators (WTGs) helps to mitigate under-frequency transients, promotes fault ride-through and damps inter-area oscillations. It is therefore important to quantify this inertia. The authors use measured wind farm responses during under-frequency transients to provide this information. They discuss the extent of the data and the criteria used to select certain events for further analysis. The estimation of WTG inertia is based on a induction generator model. The basis of the model will be described. The manner in which the model is applied to estimate the inertia from the measured data is then explained. Finally, the implications of the results for power system operation are assessed.
Resumo:
Frequency stability has not necessarily been a major problem for the majority of power systems in the past. However, for economic and environmental reasons, power systems are now operated closer to stability limits to maximise the use of the existing networks. Therefore, introduction of new, more efficient and renewable generation technologies, and their effect on the power system must be fully understood if a reliable and secure electricity supply is to be maintained. Using the Northern Ireland, and interconnected Republic of Ireland electricity networks as a case study, this paper addresses some of the issues regarding integration and modelling of combined cycle gas turbines (CCGT), and wind turbine generator (WTG) technology on a small islanded power system.
Resumo:
SOMMARIO – Si presenta un macro modello di tipo reticolare in grado di riprodurre il comportamento in presenza di taglio e momento di nodi esterni trave-colonna di telai in calcestruzzo fibrorinforzato con fibre di acciaio
uncinato ed ordinario. Il caricamento del sistema è di tipo monotono come nel caso dell’analisi di pushover. Il modello considera la presenza di armature orizzontali e verticali della regione nodale e tiene in conto delle modalità
di rottura legate allo snervamento delle barre e allo schiacciamento delle regioni compresse in regime di sforzi pluriassiali. Il modello include le deformazioni flessionali della trave e della colonna in presenza di sforzo normale costante e restituisce la risposta del sistema colonna-nodo-trave (sub-assembralggio) tramite le curve carico-freccia all’estremità della semitrave. Per i singoli costituenti (trave, colonna e nodo) si è considerata la prima fessurazione, lo snervamento e lo schiacciamento delle regioni compresse e si sono fornite precise indicazioni sulla sequenza degli eventi che come è noto sono di fondamentale importanza per lo sviluppo di un progetto plastico che rispetti la gerarchia delle resistenze. Con l’uso del modello il controllo della gerarchia delle resistenze avviene a livello sezionale (lo snervamento delle barre deve avvenire prima dello schiacciamento delle regioni compresse) o di macro elemento (nella regione nodale lo snervamento delle staffe precede la crisi dei puntoni) e dell’intero elemento
sub-assemblaggio trave debole, colonna forte e nodo sovraresistente.
La risposta ottenuta con i modello proposto è in buon accordo con le risposte sperimentali disponibili in letteratura (almeno in termini di resistenza del sub-assemblaggio). Il modello è stato ulteriormente validato con analisi
numeriche agli elementi finiti condotte con il codice ATENA-2D. Le analisi numeriche sono state condotte utilizzando per il calcestruzzo fibroso adeguate leggi costitutive proposte dagli autori ed in grado di cogliere gli effetti
di softening e di resistenza residua a trazione legati alla presenza di fibre. Ulteriori sviluppi del modello saranno indirizzati a includere gli effetti di sfilamento delle barre d’armatura della trave e del conseguente degrado delle
tensioni d’aderenza per effetto di carichi monotonici e ciclici.
SUMMARY – A softened strut-and-tie macro model able to reproduce the flexural behavior of external beam-tocolumn joints with the presence of horizontal and vertical steel bars, including softening of compressed struts and yielding of main and secondary steel bars, is presented, to be used for the pushover analysis. The model proposed is able to calculate also the flexural response of fibrous reinforced concrete (FRC) beam-to-column sub-assemblages in term of a multilinear load-deflection curves. The model is able to take into account of the tensile behavior of main bars embedded in the surrounding concrete and of the softening of the compressed strut, the arrangement and percentage of the steel bars, the percentage and the geometry of steel fibers. First cracking, yielding of main steel and crushing of concrete were identified to determine the corresponding loads and displacement and to plot the simplified monotonic load-deflection curves of the sub-assemblages subjected in the column to constant vertical
load and at the tip of the beam to monotonically increasing lateral force. Through these load-delfection curves the component (beam, joint and column) that first collapse can be recognized and the capacity design can be verified.
The experimental results available in the literature are compared with the results obtained through the proposed model. Further, a validation of the proposed model is numerically made by using a non linear finite element program (ATENA-2D) able to analyze the flexural behavior of sub-assemblages.
Resumo:
In this study, a constant suction technique for controlling boundary layer separation at low Reynolds numbers was designed and tested. This was later implemented on small wind turbines. Small wind turbines need to operate in low wind speeds, that is, in low Reynolds number regimes – typically in the range 104–105. Airfoils are prone to boundary layer separation in these conditions, leading to a substantial drop in aerodynamic performance of the blades. Under these conditions turbines will have reduced energy output. This paper presents experimental results of applying surface-suction over the suction-surface of airfoils for controlling boundary layer separation. The Reynolds numbers for the experiments are kept in the range 8×104–5×105. The air over the surface of the airfoil is drawn into the airfoil through a slit. It is found that the lift coefficient of the airfoils increases and the drag reduces. Based on the improved airfoil characteristics, an analysis of increase in Coefficient of Power (CP), versus input power for a small wind turbine blade with constant suction is presented.
Resumo:
Tidal turbines have been tested extensively at many scales in steady state flow. Testing medium- or full-scale devices in turbulent flow has been less thoroughly examined. The differences between turbine performances in these two different states are needed for testing method verification and numerical model validation. The work in this paper documents the performance of a 1/10 scale turbine in steady state pushing tests and tidal moored tests. The overall performance of the device appears to decrease with turbulent flow, though there is increased data scatter and therefore, reduced uncertainty. At maximum power performance, as velocity increases the mechanical power and electrical power reduction from steady to unsteady flow increases. The drive train conversion efficiency also decreases. This infers that the performance for this turbine design is affected by the presence of turbulent flow.
Resumo:
Field testing studies are required for tidal turbine device developers to determine the performance of their turbines in tidal flows. Full-scale testing of the SCHOTTEL tidal turbine has been conducted at Queen’s University Belfast’s tidal site at Strangford Lough, NI. The device was mounted on a floating barge. Testing was conducted over 48 days, for 288 h, during flood tides in daylight hours. Several instruments were deployed, resulting in an expansive data set. The performance results from this data set are presented here. The device, rated to 50 kW at 2.75 m/s was tested in flows up to 2.5 m/s, producing up to 19 kW, when time-averaged. The thrust on the turbine reached 17 kN in the maximum flow. The maximum system efficiency of the turbine in these flows reached 35%. The test campaign was very successful and further tests may be conducted at higher flow speeds in a similar tidal environment.
Resumo:
Thermal barrier coatings (TBCs) are widely adopted to protect mechanical components in gas turbine engines operating at high temperature. Basically, the surface temperature of these components must be low enough to retain material properties within acceptable bounds and to extend component life. From this standpoint, air plasma-sprayed (APS) ceria and yttria co-stabilized zirconia (CYSZ) is particularly promising because it provides enhanced thermal insulation capabilities and resistance to hot corrosion. However, essential mechanical properties, such as hardness and Young's modulus, have been less thoroughly investigated. Knowledge of Young's modulus is of concern because it has a significant effect on strain tolerance and stress level and, hence, on durability. The focus of the present study was to determine the mechanical properties of APS CYSZ coatings. In particular, X-ray diffraction (XRD) is adopted for phase analysis of powders and as-sprayed coatings. In addition, scanning electron microscopy (SEM) and image analysis (IA) are employed to explore coating microstructure and porosity. Finally, the Young's modulus of the coating is determined using nanoindentation and a resonant method. The results obtained are then discussed and a cross-check on their consistency is carried out by resorting to a micromechanical model. © 2010 Blackwell Publishing Ltd.
Resumo:
Abstract. The possibility of using pumice aggregates for concrete in structural applications is discussed. In particular, the mix design of lightweight concrete for the manufacturing masonry units having proper strength, is discussed. Moreover, the design of the unit shape according to the technical code requirements and making it possible to arrange reinforcing steel bars is described. Reinforced bearing masonry walls, made with the concrete units in question, were manufactured and tests on the panels and on the designed units were carried out. For comparison, tests on concrete units and structural elements were carried out after the substitution of pumice aggregates with ordinary lightweight aggregates, proving that pumice can be considered an alternative to them. Sommario. L’uso della pomice come inerte per il confezionamento di calcestruzzo è poco diffuso sebbene essa sia stata usata già in antiche costruzioni come il Pantheon in Roma. In questo studio si affronta la possibilità di realizzare blocchi in calcestruzzo alleggerito con granuli di pomice. I blocchi, progettati e realizzati secondo le indicazioni normative correnti, sono stati usati per realizzare pannelli murari armati da sottoporre a carichi ciclici orizzontali. I risultati ottenuti, messi a confronto con quelli di pannelli realizzati con blocchi in cls alleggerito con argilla espansa, hanno mostrato la possibilità di utilizzare la pomice come validissima alternativa all’argilla espansa.
Resumo:
Abstract. The possibility of using pumice aggregates for concrete in structural applications is discussed. In particular, the mix design of lightweight concrete for the manufacturing masonry units having proper strength, is discussed. Moreover, the design of the unit shape according to the technical code requirements and making it possible to arrange reinforcing steel bars is described. Reinforced bearing masonry walls, made with the concrete units in question, were manufactured and tests on the panels and on the designed units were carried out. For comparison, tests on concrete units and structural elements were carried out after the substitution of pumice aggregates with ordinary lightweight aggregates, proving that pumice can be considered an alternative to them. Sommario. L’uso della pomice come inerte per il confezionamento di calcestruzzo è poco diffuso sebbene essa sia stata usata già in antiche costruzioni come il Pantheon in Roma. In questo studio si affronta la possibilità di realizzare blocchi in calcestruzzo alleggerito con granuli di pomice. I blocchi, progettati e realizzati secondo le indicazioni normative correnti, sono stati usati per realizzare pannelli murari armati da sottoporre a carichi ciclici orizzontali. I risultati ottenuti, messi a confronto con quelli di pannelli realizzati con blocchi in cls alleggerito con argilla espansa, hanno mostrato la possibilità di utilizzare la pomice come validissima alternativa all’argilla espansa.
Resumo:
The small signal stability of interconnected power systems is one of the important aspects that need to be investigated since the oscillations caused by this kind of instability have caused many incidents. With the increasing penetration of wind power in the power system, particularly doubly fed induction generator (DFIG), the impact on the power system small signal stability performance should be fully investigated. Because the DFIG wind turbine integration is through a fast action converter and associated control, it does not inherently participate in the electromechanical small signal oscillation. However, it influences the small signal stability by impacting active power flow paths in the network and replacing synchronous generators that have power system stabilizer (PSS). In this paper, the IEEE 39 bus test system has been used in the analysis. Furthermore, four study cases and several operation scenarios have been conducted and analysed. The selective eigenvalue Arnoldi/lanczos's method is used to obtain the system eigenvalue in the range of frequency from 0.2 Hz to 2 Hz which is related to electromechanical oscillations. Results show that the integration of DFIG wind turbines in a system during several study cases and operation scenarios give different influence on small signal stability performance.
Resumo:
The transport sector is considered to be one of the most dependent sectors on fossil fuels. Meeting ecological, social and economic demands throughout the sector has got increasingly important in recent times. A passenger vehicle with a more environmentally friendly propulsion system is the hybrid electric vehicle. Combining an internal combustion engine and an electric motor offers the potential to reduce carbon dioxide emissions. The overall objective of this research is to provide an appraisal of the use of a micro gas turbine as the range extender in a plug-in hybrid electric vehicle. In this application, the gas turbine can always operate at its most efficient operating point as its only requirement is to recharge the battery. For this reason, it is highly suitable for this purpose. Gas turbines offer many benefits over traditional internal combustion engines which are traditionally used in this application. They offer a high power-to-weight ratio, multi-fuel capability and relatively low emission levels due to continuous combustion.