99 resultados para Evolutionary Computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many decades Palaeolithic research viewed the development of early modern human behaviour as largely one of progress down a path towards the modernity of the present. The European Palaeolithic sequence the most extensively studied was for a long time the yard-stick against which records from other regions were judged. Recent work undertaken in Africa and increasingly Asia, however, now suggests that the European evidence may tell a story that is more parochial and less universal than previously thought. While tracking developments at the large scale (the grand narrative) remains important, there is growing appreciation that to achieve a comprehensive understanding of human behavioural evolution requires an archaeologically regional perspective to balance this. One of the apparent markers of human modernity that has been sought in the global Palaeolithic record, prompted by finds in the European sequence, is innovation in bonebased technologies. As one step in the process of re-evaluating and contextualizing such innovations, in this article we explore the role of prehistoric bone technologies within the Southeast Asian sequence, where they have at least comparable antiquity to Europe and other parts of Asia. We observe a shift in the technological usage of bone from a minor component to a medium of choice during the second half of the Last Termination and into the Holocene. We suggest that this is consistent with it becoming a focus of the kinds of inventive behaviour demanded of foraging communities as they adapted to the far-reaching environmental and demographic changes that were reshaping this region at that time. This record represents one small element of a much wider, much longerterm adaptive process, which we would argue is not confined to the earliest instances of a particular technology or behaviour, but which forms part of an on-going story of our behavioural evolution. © 2012 The McDonald Institute for Archaeological Research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Species-area relationships (SAR) are fundamental in the understanding of biodiversity patterns and of critical importance for predicting species extinction risk worldwide. Despite the enormous attention given to SAR in the form of many individual analyses, little attempt has been made to synthesize these studies. We conducted a quantitative meta-analysis of 794 SAR, comprising a wide span of organisms, habitats and locations. We identified factors reflecting both pattern-based and dynamic approaches to SAR and tested whether these factors leave significant imprints on the slope and strength of SAR. Our analysis revealed that SAR are significantly affected by variables characterizing the sampling scheme, the spatial scale, and the types of organisms or habitats involved. We found that steeper SAR are generated at lower latitudes and by larger organisms. SAR varied significantly between nested and independent sampling schemes and between major ecosystem types, but not generally between the terrestrial and the aquatic realm. Both the fit and the slope of the SAR were scale-dependent. We conclude that factors dynamically regulating species richness at different spatial scales strongly affect the shape of SAR. We highlight important consequences of this systematic variation in SAR for ecological theory, conservation management and extinction risk predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is an exciting era for molecular computation because molecular logic gates are being pushed in new directions. The use of sulfur rather than the commonplace nitrogen as the key receptor atom in metal ion sensors is one of these directions; plant cells coming within the jurisdiction of fluorescent molecular thermometers is another, combining photochromism with voltammetry for molecular electronics is yet another. Two-input logic gates benefit from old ideas such as rectifying bilayer electrodes, cyclodextrin-enhanced room-temperature phosphorescence, steric hindrance, the polymerase chain reaction, charge transfer absorption of donor–acceptor complexes and lectin–glycocluster interactions. Furthermore, the concept of photo-uncaging enables rational ways of concatenating logic gates. Computational concepts are also applied to potential cancer theranostics and to the selective monitoring of neurotransmitters in situ. Higher numbers of inputs are also accommodated with the concept of functional integration of gates, where complex input–output patterns are sought out and analysed. Molecular emulation of computational components such as demultiplexers and parity generators/checkers are achieved in related ways. Complexity of another order is tackled with molecular edge detection routines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by the need for designing efficient and robust fully-distributed computation in highly dynamic networks such as Peer-to-Peer (P2P) networks, we study distributed protocols for constructing and maintaining dynamic network topologies with good expansion properties. Our goal is to maintain a sparse (bounded degree) expander topology despite heavy {\em churn} (i.e., nodes joining and leaving the network continuously over time). We assume that the churn is controlled by an adversary that has complete knowledge and control of what nodes join and leave and at what time and has unlimited computational power, but is oblivious to the random choices made by the algorithm. Our main contribution is a randomized distributed protocol that guarantees with high probability the maintenance of a {\em constant} degree graph with {\em high expansion} even under {\em continuous high adversarial} churn. Our protocol can tolerate a churn rate of up to $O(n/\poly\log(n))$ per round (where $n$ is the stable network size). Our protocol is efficient, lightweight, and scalable, and it incurs only $O(\poly\log(n))$ overhead for topology maintenance: only polylogarithmic (in $n$) bits needs to be processed and sent by each node per round and any node's computation cost per round is also polylogarithmic. The given protocol is a fundamental ingredient that is needed for the design of efficient fully-distributed algorithms for solving fundamental distributed computing problems such as agreement, leader election, search, and storage in highly dynamic P2P networks and enables fast and scalable algorithms for these problems that can tolerate a large amount of churn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular logic-based computation continues to throw up new applications in sensing and switching, the newest of which is the edge detection of objects. The scope of this phenomenon is mapped out by the use of structure-activity relationships, where several structures of the molecules and of the objects are examined. The different angles and curvatures of the objects are followed with good-fidelity in the visualized edges, even when the objects are in reverse video.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Boolean games, agents try to reach a goal formulated as a Boolean formula. These games are attractive because of their compact representations. However, few methods are available to compute the solutions and they are either limited or do not take privacy or communication concerns into account. In this paper we propose the use of an algorithm related to reinforcement learning to address this problem. Our method is decentralized in the sense that agents try to achieve their goals without knowledge of the other agents’ goals. We prove that this is a sound method to compute a Pareto optimal pure Nash equilibrium for an interesting class of Boolean games. Experimental results are used to investigate the performance of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this contribution is to discuss local computation in credal networks — graphical models that can represent imprecise and indeterminate probability values. We analyze the inference problem in credal networks, discuss how inference algorithms can benefit from local computation, and suggest that local computation can be particularly important in approximate inference algorithms.