102 resultados para Erythroleukemia Cell-differentiation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Squamous cell carcinoma accounts for 20% of all human lung cancers and is strongly linked to cigarette smoking. It develops through premalignant changes that are characterized by high levels of keratin 14 (K14) expression in the airway epithelium and evolve through basal cell hyperplasia, squamous metaplasia and dysplasia to carcinoma in situ and invasive carcinoma. In order to explore the impact of K14 in the pulmonary epithelium that normally lacks both squamous differentiation and K14 expression, human keratin 14 gene hK14 was constitutively expressed in mouse airway progenitor cells using a mouse Clara cell specific 10 kDa protein (CC10) promoter. While the lungs of CC10-hK14 transgenic mice developed normally, we detected increased expression of K14 and the molecular markers of squamous differentiation program such as involucrin, loricrin, small proline-rich protein 1A, transglutaminase 1 and cholesterol sulfotransferase 2B1. In contrast, wild-type lungs were negative. Aging CC10-hK14 mice revealed multifocal airway cell hyperplasia, occasional squamous metaplasia and their lung tumors displayed evidence for multidirectional differentiation. We conclude that constitutive expression of hK14 initiates squamous differentiation program in the mouse lung, but fails to promote squamous maturation. Our study provides a novel model for assessing the mechanisms of premalignant lesions in vivo by modifying differentiation and proliferation of airway progenitor cells. © The Author 2008. Published by Oxford University Press. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infections with helminth parasites prevent/attenuate auto-inflammatory disease. Here we show that molecules secreted by a helminth parasite could prevent Type 1 Diabetes (T1D) in nonobese diabetic (NOD) mice. When delivered at 4 weeks of age (coincident with the initiation of autoimmunity), the excretory/secretory products of Fasciola hepatica (FhES) prevented the onset of T1D, with 84% of mice remaining normoglycaemic and insulitis-free at 30 weeks of age. Disease protection was associated with suppression of IFN-γ secretion from autoreactive T cells and a switch to the production of a regulatory isotype (from IgG2a to IgG1) of autoantibody. Following FhES injection, peritoneal macrophages converted to a regulatory M2 phenotype, characterised by increased expression levels of Ym1, Arg-1, TGFβ and PD-L1. Expression of these M2 genetic markers increased in the pancreatic lymph nodes and the pancreas of FhES-treated mice. In vitro, FhES-stimulated M2 macrophages induced the differentiation of Tregs from splenocytes isolated from naïve NOD mice. Collectively, our data shows that FhES contains immune-modulatory molecules that mediate protection from autoimmune diabetes via the induction and maintenance of a regulatory immune environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In the paper we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in pre-differentiated iPSCs induced EC marker upregulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-β2 mRNA and secreted protein level, consistent with the strong upregulation of TGF-β2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFβ-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFβ-2, strongly decreased VE-cadherin expression. Furthermore, TGFβ-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21 and we showed that PTEN knockdown is required for miR-21 mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stem and progenitor cells have generated considerable scientific and commercial interest in recent years due to their potential for novel cell therapy for a variety of medical conditions. A highly active research area in the field of regenerative medicine is vascular biology. Blood vessel repair and angiogenesis are key processes with endothelial progenitor cells (EPCs) playing a central role. Clinical trials for ischemic conditions, such as myocardial infarction and peripheral arterial disease, have suggested cell therapies to be feasible, safe, and potentially beneficial. Development of efficient methodologies to deliver EPC-based cytotherapies offers new hope for millions of patients with ischemic conditions. Evidence indicates that EPCs, depending on the subtype, mediate angiogenesis through different mechanisms. Differentiation into endothelium and complete integration into damaged vasculature was the first EPC mechanism to be proposed. However, many studies have demonstrated that vasoregulatory paracrine factor secretion by transplanted cells is also important. Many EPC subsets enhance angiogenesis and promote tissue repair by cytokine release without incorporating into the damaged vasculature. Whatever the mechanism, vascular repair and therapeutic angiogenesis using EPCs represent a realistic treatment option and also provides many commercialization opportunities. This review discusses recent advances in the EPC field whilst recounting relevant patents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macrophage inhibitory cytokine-1 (MIC-1) is a multifunctional cytokine produced in high amounts by placental tissue. Inhibiting trophoblast invasion and suppressing inflammation through inhibition of macrophage activation, MIC-1 is thought to provide pleiotropic functions in the establishment and maintenance of pregnancy. So far, little is known about the decidual cell subsets producing MIC-1 and the effect of this cytokine on dendritic cells (DCs), which are known to play a distinct role in the development of pro-fetal tolerance in pregnancy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to differentiate human pluripotent stem cells into endothelial cells with properties of cord-blood endothelial colony–forming cells (CB-ECFCs) may enable the derivation of clinically relevant numbers of highly proliferative blood vessel–forming cells to restore endothelial function in patients with vascular disease. We describe a protocol to convert human induced pluripotent stem cells (hiPSCs) or embryonic stem cells (hESCs) into cells similar to CB-ECFCs at an efficiency of >108 ECFCs produced from each starting pluripotent stem cell. The CB-ECFC-like cells display a stable endothelial phenotype with high clonal proliferative potential and the capacity to form human vessels in mice and to repair the ischemic mouse retina and limb, and they lack teratoma formation potential. We identify Neuropilin-1 (NRP-1)-mediated activation of KDR signaling through VEGF165 as a critical mechanism for the emergence and maintenance of CB-ECFC-like cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study LC n-3 PUFA-specific effects on the degree of monocyte differentiation and macrophage foam cell formation were investigated by treating PMA-induced immature and mature macrophage models with LC n-3/n-6 PUFA during and post-differentiation. During immature macrophage differentiation LC n-3 PUFA alone decreased TNFα mRNA levels. EPA, and the n-6 PUFAs, linoleic acid and arachidonic acid, decreased CD36 mRNA levels, and EPA also downregulated CD49d cell-surface expression. Both LC n-3 PUFA reduced LDLr mRNA levels in immature macrophages, while DHA alone reduced levels in mature macrophages. Post-differentiation, n-3 and -6 PUFA reduced basal, but not oxidised LDL dependent cholesterol levels in immature macrophages. LC n-3 PUFA-specific reductions in LDLr and LOX-1 mRNA expression were also observed.

This study found LC n-3 PUFA specific, anti-atherogenic effects were more significant in immature macrophages. LC n-3 PUFA effects may be modulated by the extent of monocyte to macrophage differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CCAAT enhancer binding protein α (C/EBPα) plays an essential role in cellular differentiation, growth, and energy metabolism. Here, we investigate the correlation between C/EBPα and hepatocellular carcinoma (HCC) patient outcomes and how C/EBPα protects cells against energy starvation. Expression of C/EBPα protein was increased in the majority of HCCs examined (191 pairs) compared with adjacent nontumor liver tissues in HCC tissue microarrays. Its upregulation was correlated significantly with poorer overall patient survival in both Kaplan-Meier survival (P = 0.017) and multivariate Cox regression (P = 0.028) analyses. Stable C/EBPα-silenced cells failed to establish xenograft tumors in nude mice due to extensive necrosis, consistent with increased necrosis in human C/EBPα-deficient HCC nodules. Expression of C/EBPα protected HCC cells in vitro from glucose and glutamine starvation-induced cell death through autophagy-involved lipid catabolism. Firstly, C/EBPα promoted lipid catabolism during starvation, while inhibition of fatty acid beta-oxidation significantly sensitized cell death. Secondly, autophagy was activated in C/EBPα-expressing cells, and the inhibition of autophagy by ATG7 knockdown or chloroquine treatment attenuated lipid catabolism and subsequently sensitized cell death. Finally, we identified TMEM166 as a key player in C/EBPα-mediated autophagy induction and protection against starvation.

CONCLUSION: The C/EBPα gene is important in that it links HCC carcinogenesis to autophagy-mediated lipid metabolism and resistance to energy starvation; its expression in HCC predicts poorer patient prognosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NOTCH pathway is an evolutionarily conserved signalling network, which is fundamental in regulating developmental processes in invertebrates and vertebrates (Gazave et al. in BMC Evol Biol 9:249, 2009). It regulates self-renewal (Butler et al. in Cell Stem Cell 6:251–264, 2010), differentiation (Auderset et al. in Curr Top Microbiol Immunol 360:115–134, 2012), proliferation (VanDussen et al. in Development 139:488–497, 2012) and apoptosis (Cao et al. in APMIS 120:441–450, 2012) of diverse cell types at various stages of their development. NOTCH signalling governs cell-cell interactions and the outcome of such responses is highly context specific. This makes it impossible to generalize about NOTCH functions as it stimulates survival and differentiation of certain cell types, whereas inhibiting these processes in others (Meier-Stiegen et al. in PLoS One 5:e11481, 2010). NOTCH was first identified in 1914 in Drosophila and was named after the indentations (notches) present in the wings of the mutant flies (Bigas et al. in Int J Dev Biol 54:1175–1188, 2010). Homologs of NOTCH in vertebrates were initially identified in Xenopus (Coffman et al. in Science 249:1438–1441, 1990) and in humans NOTCH was first identified in T-Acute Lymphoblastic Leukaemia (T-ALL) (Ellisen et al. in Cell 66:649–61, 1991). NOTCH signalling is integral in neurogenesis (Mead and Yutzey in Dev Dyn 241:376–389, 2012), myogenesis (Schuster-Gossler et al. in Proc Natl Acad Sci U S A 104:537–542, 2007), haematopoiesis (Bigas et al. in Int J Dev Biol 54:1175–1188, 2010), oogenesis (Xu and Gridley in Genet Res Int 2012:648207, 2012), differentiation of intestinal cells (Okamoto et al. in Am J Physiol Gastrointest Liver Physiol 296:G23–35, 2009) and pancreatic cells (Apelqvist et al. in Nature 400:877–881, 1999). The current review will focus on NOTCH signalling in normal and malignant blood cell production or haematopoiesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innate immunity represents the first line of defence against invading pathogens. It consists of an initial inflammatory response that recruits white blood cells to the site of infection in an effort to destroy and eliminate the pathogen. Some pathogens replicate within host cells, and cell death by apoptosis is an important effector mechanism to remove the replication niche for such microbes. However, some microbes have evolved evasive strategies to block apoptosis, and in these cases host cells may employ further countermeasures, including an inflammatory form of cell death know as necroptosis. This review aims to highlight the importance of the RIP kinase family in controlling these various defence strategies. RIP1 is initially discussed as a key component of death receptor signalling and in the context of dictating whether a cell triggers a pathway of pro-inflammatory gene expression or cell death by apoptosis. The molecular and functional interplay of RIP1 and RIP3 is described, especially with respect to mediating necroptosis and as key mediators of inflammation. The function of RIP2, with particular emphasis on its role in NOD signalling, is also explored. Special attention is given to emphasizing the physiological and pathophysiological contexts for these various functions of RIP kinases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human induced pluripotent stem (iPS) cell-derived endothelial cells (ECs) hold clear potential for therapeutic angiogenesis as a novel strategy for ischaemic disease. Recently, we have developed a novel method for direct reprogramming of partial iPS (PiPS) cells, which unlike iPS cells, are generated before pluripotency so do not form tumours, and may be differentiated into ECs with characteristic morphology and pro-angiogenic actions. Our previous work showed that PiPS-derived ECs are capable of forming vascular-like tubes both in vitro and in vivo and promoting re-endothelialisation of ischemic tissue, with greater effectiveness versus mature ECs.

Interestingly, our preliminary data demonstrate that Nox NADPH oxidases, which are reported to influence stem cell function, are progressively induced during PiPs/PiPS-EC differentiation and in response to hypoxia, with Nox4 demonstrating highest expression. As this isoform is an established regulator of angiogenesis, we hypothesize that Nox4 plays a key role in modulating PiPS-EC generation and angiogenic function.

The aim of this project is therefore to investigate: (1) the specific role of Nox4 in direct reprogramming of PiPS cells and differentiation to PiPS-ECs; (2) whether genetic manipulation of Nox4 influences in vitro function of PiPs-ECs and their ability to promote in vivo angiogenesis. This will be achieved by employing established in vitro functional assays and an experimental model of hindlimb ischaemia with assessment of relevant end-points. Identification of a key role for Nox4 in regulating PiPS-EC generation/function may inform selective targeting of this isoform to enhance the efficiency of PiPS-EC differentiation and their capacity to treat ischemic disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise concerns that analgesic use in pregnancy could potentially affect fertility of resulting daughters and grand-daughters.