94 resultados para Epidemics spatial analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate variability along the 600 km Tibbitt to Contwyoto Winter Road (TCWR) in central Northwest Territories is poorly understood. With the transportation of goods from Yellowknife to the mines projected to increase significantly as new mines open, it is critical that planners and mine developers have reasonable data on the future viability of the road, as alternative transportation costs (e.g. air transport) are prohibitively high.

The research presented here is part of a paleoclimate study based on the analysis of multiple proxy data derived from freeze cores in lakes along the TCWR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a newly invented parallel kinematic machine (PKM), Exechon has attracted intensive attention from both academic and industrial fields due to its conceptual high performance. Nevertheless, the dynamic behaviors of Exechon PKM have not been thoroughly investigated because of its structural and kinematic complexities. To identify the dynamic characteristics of Exechon PKM, an elastodynamic model is proposed with the substructure synthesis technique in this paper. The Exechon PKM is divided into a moving platform subsystem, a fixed base subsystem and three limb subsystems according to its structural features. Differential equations of motion for the limb subsystem are derived through finite element (FE) formulations by modeling the complex limb structure as a spatial beam with corresponding geometric cross sections. Meanwhile, revolute, universal, and spherical joints are simplified into virtual lumped springs associated with equivalent stiffnesses and mass at their geometric centers. Differential equations of motion for the moving platform are derived with Newton's second law after treating the platform as a rigid body due to its comparatively high rigidity. After introducing the deformation compatibility conditions between the platform and the limbs, governing differential equations of motion for Exechon PKM are derived. The solution to characteristic equations leads to natural frequencies and corresponding modal shapes of the PKM at any typical configuration. In order to predict the dynamic behaviors in a quick manner, an algorithm is proposed to numerically compute the distributions of natural frequencies throughout the workspace. Simulation results reveal that the lower natural frequencies are strongly position-dependent and distributed axial-symmetrically due to the structure symmetry of the limbs. At the last stage, a parametric analysis is carried out to identify the effects of structural, dimensional, and stiffness parameters on the system's dynamic characteristics with the purpose of providing useful information for optimal design and performance improvement of the Exechon PKM. The elastodynamic modeling methodology and dynamic analysis procedure can be well extended to other overconstrained PKMs with minor modifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of detecting spatially-coherent groups of data that exhibit anomalous behavior has started to attract attention due to applications across areas such as epidemic analysis and weather forecasting. Earlier efforts from the data mining community have largely focused on finding outliers, individual data objects that display deviant behavior. Such point-based methods are not easy to extend to find groups of data that exhibit anomalous behavior. Scan Statistics are methods from the statistics community that have considered the problem of identifying regions where data objects exhibit a behavior that is atypical of the general dataset. The spatial scan statistic and methods that build upon it mostly adopt the framework of defining a character for regions (e.g., circular or elliptical) of objects and repeatedly sampling regions of such character followed by applying a statistical test for anomaly detection. In the past decade, there have been efforts from the statistics community to enhance efficiency of scan statstics as well as to enable discovery of arbitrarily shaped anomalous regions. On the other hand, the data mining community has started to look at determining anomalous regions that have behavior divergent from their neighborhood.In this chapter,we survey the space of techniques for detecting anomalous regions on spatial data from across the data mining and statistics communities while outlining connections to well-studied problems in clustering and image segmentation. We analyze the techniques systematically by categorizing them appropriately to provide a structured birds eye view of the work on anomalous region detection;we hope that this would encourage better cross-pollination of ideas across communities to help advance the frontier in anomaly detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perfect information is seldom available to man or machines due to uncertainties inherent in real world problems. Uncertainties in geographic information systems (GIS) stem from either vague/ambiguous or imprecise/inaccurate/incomplete information and it is necessary for GIS to develop tools and techniques to manage these uncertainties. There is a widespread agreement in the GIS community that although GIS has the potential to support a wide range of spatial data analysis problems, this potential is often hindered by the lack of consistency and uniformity. Uncertainties come in many shapes and forms, and processing uncertain spatial data requires a practical taxonomy to aid decision makers in choosing the most suitable data modeling and analysis method. In this paper, we: (1) review important developments in handling uncertainties when working with spatial data and GIS applications; (2) propose a taxonomy of models for dealing with uncertainties in GIS; and (3) identify current challenges and future research directions in spatial data analysis and GIS for managing uncertainties.