123 resultados para Energy Density


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isochoric heating of solid-density matter up to a few tens of eV is of interest for investigating astrophysical or inertial fusion scenarios. Such ultra-fast heating can be achieved via the energy deposition of short-pulse laser generated electrons. Here, we report on experimental measurements of this process by means of time-and space-resolved optical interferometry. Our results are found in reasonable agreement with a simple numerical model of fast electron-induced heating. (C) 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Green oil, which leads to the deactivation of the catalysts used for the selective hydrogenation of acetylene, has long been observed but its formation mechanism is not fully understood. In this work, the formation of 1,3-butadiene, known to be the precursor of green oil, on both Pd(111) and Pd(211) surfaces is examined using density functional theory calculations. The pathways containing C-2 + C-2 coupling reactions as well as the corresponding hydrogenation reactions are studied in detail. Three pathways for 1,3-butadiene production, namely coupling plus hydrogenation and further hydrogenation, hydrogenation plus coupling plus hydrogenation, and a two step hydrogenation followed by coupling, are determined. By comparing the effective barriers, we identify the favored pathway on both surfaces. A general understanding toward the deactivation process of the industrial catalysts is also provided. In addition, the effects of the formation of subsurface carbon atoms as well as the Ag alloying on the 1,3-butadiene formation on Pd-based catalysts are also investigated and compared with experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selective hydrogenation of acetylene to ethylene on several Pd surfaces (Pd(111), Pd(100), Pd(211), and Pd(211)-defect) and Pd surfaces with subsurface species (carbon and hydrogen) as well as a number of Pd-based alloys (Pd-M/Pd(111) and Pd-M/Pd(211) (M = Cu, Ag and Au)) are investigated using density functional theory calculations to understand both the acetylene hydrogenation activity and the selectivity of ethylene formation. All the hydrogenation barriers are calculated, and the reaction rates on these surfaces are obtained using a two-step model. Pd(211) is found to have the highest activity for acetylene hydrogenation while Pd(100) gives rise to the lowest activity. In addition, more open surfaces result in over-hydrogenation to form ethane, while the close-packed surface (Pd(111)) is the most selective. However, we also find that the presence of subsurface carbon and hydrogen significantly changes the reactivity and selectivity of acetylene toward hydrogenation on Pd surfaces. On forming surface alloys of Pd with Cu, Ag and Au, the selectivity for ethylene is also found to be changed. A new energy decomposition method is used to quantitatively analyze the factors in determining the changes in selectivity. These surface modifiers are found to block low coordination unselective sites, leading to a decreased ethane production. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boron-modified Pd catalysts have shown excellent performance for the selective hydrogenation of alkynes experimentally. In the current work, we investigated the hydrogenation of acetylene on boron-modified Pd(111) and Pd(211) surfaces, utilizing density functional theory calculations. The activity of acetylene hydrogenation has been studied by estimating the effective barrier of the whole process. The selectivity of ethylene formation is investigated from a comparison between the desorption and the hydrogenation of ethylene as well as comparison between the ethylene and the 1,3-butadiene formation. Formation of subsurface carbon and hydrogen on both boron-modified Pd(111) and Pd(211) surfaces has also been evaluated, since these have been reported to affect both the activity and the selectivity of acetylene hydrogenation to produce ethylene on Pd surfaces. Our results provide some important insights into the Pd B catalysts for selective hydrogenation of acetylene and also for more complex hydrogenation systems, such as stereoselective hydrogenation of longer chain alkynes and selective hydrogenation of vegetable oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolved Air Flotation (DAF) is a well-known coagulation-flotation system applied at large scale for microalgae harvesting. Compared to conventional harvesting technologies DAF allows high cell recovery at lower energy demand. By replacing microbubbles with microspheres, the innovative Ballasted Dissolved Air Flotation (BDAF) technique has been reported to achieve the same algae cell removal efficiency, while saving up to 80% of the energy required for the conventional DAF unit. Using three different algae cultures (Scenedesmus obliquus, Chlorella vulgaris and Arthrospira maxima), the present work investigated the practical, economic and environmental advantages of the BDAF system compared to the DAF system. 99% cells separation was achieved with both systems, nevertheless, the BDAF technology allowed up to 95% coagulant reduction depending on the algae species and the pH conditions adopted. In terms of floc structure and strength, the inclusion of microspheres in the algae floc generated a looser aggregate, showing a more compact structure within single cell alga, than large and filamentous cells. Overall, BDAF appeared to be a more reliable and sustainable harvesting system than DAF, as it allowed equal cells recovery reducing energy inputs, coagulant demand and carbon emissions. © 2014 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-Volatile Memory (NVM) technology holds promise to replace SRAM and DRAM at various levels of the memory hierarchy. The interest in NVM is motivated by the difficulty faced in scaling DRAM beyond 22 nm and, long-term, lower cost per bit. While offering higher density and negligible static power (leakage and refresh), NVM suffers increased latency and energy per memory access. This paper develops energy and performance models of memory systems and applies them to understand the energy-efficiency of replacing or complementing DRAM with NVM. Our analysis focusses on the application of NVM in main memory. We demonstrate that NVM such as STT-RAM and RRAM is energy-efficient for memory sizes commonly employed in servers and high-end workstations, but PCM is not. Furthermore, the model is well suited to quickly evaluate the impact of changes to the model parameters, which may be achieved through optimization of the memory architecture, and to determine the key parameters that impact system-level energy and performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of C atoms on the α-Fe2O3 (001) surface was studied based on density function theory (DFT), in which the exchange-correlation potential was chosen as the PBE (Perdew, Burke and Ernzerhof) generalized gradient approximation (GGA) with a plane wave basis set. Upon the optimization on different adsorption sites with coverage of 1/20 and 1/5 ML, it was found that the adsorption of C atoms on the α-Fe 2O3 (001) surface was chemical adsorption. The coverage can affect the adsorption behavior greatly. Under low coverage, the most stable adsorption geometry lied on the bridged site with the adsorption energy of about 3.22 eV; however, under high coverage, it located at the top site with the energy change of 8.79 eV. Strong chemical reaction has occurred between the C and O atoms at this site. The density of states and population analysis showed that the s, p orbitals of C and p orbital of O give the most contribution to the adsorption bonding. During the adsorption process, O atom shares the electrons with C, and C can only affect the outermost and subsurface layers of α-Fe2O3; the third layer can not be affected obviously. Copyright © 2008 Chinese Journal of Structural Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Harmonic generation in the limit of ultrasteep density gradients is studied experimentally. Observations reveal that, while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale lengths (L-p/lambda <1), the absolute efficiency of the harmonics declines for the steepest plasma density scale length L-p -> 0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the relativistic oscillating mirror was estimated to be in the range of 10(-4)-10(-6) of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing interest in how humans influence spatial patterns in biodiversity. One of the most frequently noted and marked of these patterns is the increase in species richness with area, the species-area relationship (SAR). SARs are used for a number of conservation purposes, including predicting extinction rates, setting conservation targets, and identifying biodiversity hotspots. Such applications can be improved by a detailed understanding of the factors promoting spatial variation in the slope of SARs, which is currently the subject of a vigorous debate. Moreover, very few studies have considered the anthropogenic influences on the slopes of SARs; this is particularly surprising given that in much of the world areas with high human population density are typically those with a high number of species, which generates conservation conflicts. Here we determine correlates of spatial variation in the slopes of species-area relationships, using the British avifauna as a case study. Whilst we focus on human population density, a widely used index of human activities, we also take into account (1) the rate of increase in habitat heterogeneity with increasing area, which is frequently proposed to drive SARs, (2) environmental energy availability, which may influence SARs by affecting species occupancy patterns, and (3) species richness. We consider environmental variables measured at both local (10 km x 10 km) and regional (290 km x 290 km) spatial grains, but find that the former consistently provides a better fit to the data. In our case study, the effect of species richness on the slope SARs appears to be scale dependent, being negative at local scales but positive at regional scales. In univariate tests, the slope of the SAR correlates negatively with human population density and environmental energy availability, and positively with the rate of increase in habitat heterogeneity. We conducted two sets of multiple regression analyses, with and without species richness as a predictor. When species richness is included it exerts a dominant effect, but when it is excluded temperature has the dominant effect on the slope of the SAR, and the effects of other predictors are marginal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using density functional theory calculations with HSE 06 functional, we obtained the structures of spin-polarized radicals on rutile TiO2(110), which is crucial to understand the photooxidation at the atomic level, and further calculate the thermodynamic stabilities of these radicals. By analyzing the results, we identify the structural features for hole trapping in the system, and reveal the mutual effects among the geometric structures, the energy levels of trapped hole states and their hole trapping capacities. Furthermore, the results from HSE 06 functional are compared to those from DFT + U and the stability trend of radicals against the number of slabs is tested. The effect of trapped holes on two important steps of the oxygen evolution reaction, i.e. water dissociation and the oxygen removal, is investigated and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dry reforming is a promising reaction to utilise the greenhouse gases CO2 and CH4. Nickel-based catalysts are the most popular catalysts for the reaction, and the coke formation on the catalysts is the main obstacle to the commercialisation of dry reforming. In this study, the whole reaction network of dry reformation on both flat and stepped nickel catalysts (Ni(111) and Ni(211)) as well as nickel carbide (flat: Ni3C(001); stepped: Ni3C(111)) is investigated using density functional theory calculations. The overall reaction energy profiles in the free energy landscape are obtained, and kinetic analyses are utilised to evaluate the activity of the four surfaces. By careful examination of our results, we find the following regarding the activity: (i) flat surfaces are more active than stepped surfaces for the dry reforming and (ii) metallic nickel catalysts are more active than those of nickel carbide, and therefore, the phase transformation from nickel to nickel carbide will reduce the activity. With respect to the coke formation, the following is found: (i) the coke formation probability can be measured by the rate ratio of CH oxidation pathway to C oxidation pathway (r(CH)/r(C)) and the barrier of CO dissociation, (ii) on Ni(111), the coke is unlikely to form, and (iii) the coke formations on the stepped surfaces of both nickel and nickel carbide can readily occur. A deactivation scheme, using which experimental results can be rationalised, is proposed. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activation of oxygen molecules is an important issue in the gold-catalyzed partial oxidation of alcohols in aqueous solution. The complexity of the solution arising from a large number of solvent molecules makes it difficult to study the reaction in the system. In this work, O-2 activation on an Au catalyst is investigated using an effective approach to estimate the reaction barriers in the presence of solvent. Our calculations show that O-2 can be activated, undergoing OOH* in the presence of water molecules. The OOH* can readily be formed on Au(211) via four possible pathways with almost equivalent free energy barriers at the aqueous-solid interface: the direct or indirect activation of O-2 by surface hydrogen or the hydrolysis of O-2 following a Langmuir-Hinshelwood mechanism or an Eley-Rideal mechanism. Among them, the Eley-Rideal mechanism may be slightly more favorable due to the restriction of the low coverage of surface H on Au(211) in the other mechanisms. The results shed light on the importance of water molecules on the activation of oxygen in gold-catalyzed systems. Solvent is found to facilitate the oxygen activation process mainly by offering extra electrons and stabilizing the transition states. A correlation between the energy barrier and the negative charge of the reaction center is found. The activation barrier is substantially reduced by the aqueous environment, in which the first solvation shell plays the most important role in the barrier reduction. Our approach may be useful for estimating the reaction barriers in aqueous systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactivity of supported gold catalysts is a hot topic in catalysis for many years. This communication reports an investigation on the dissociation of molecular hydrogen at the perimeter sites of Au/TiO2 and the spillover of hydrogen atoms from the gold to the support using density functional theory calculations. It is found that the heterolytic dissociation is favoured in comparison with homolytic dissociation of molecular hydrogen at the perimeter sites. However, the surface oxygen of the rutile TiO2(110) surface at these sites can be readily passivated by the formed OH, suggesting that further dissociation of molecular hydrogen may occur at pure gold sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional theory calculations were carried out to examine the mechanism of ethanol decomposition on the Rh(211) surface. We found that there are two possible decomposition pathways: (1) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(3)CO -> CH(3) + CO -> CH(2) + CO -> CH + CO -> C + CO and (2) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(2)COH -> CHCOH -> CHCO -> CH + CO -> C + CO. Both pathways have a common intermediate of CH(3)COH, and the key step is the formation of CH(3)CHOH species. According to our calculations, the mechanism of ethanol decomposition on Rh(211) is totally different from that on Rh(111): the reaction proceeds via CH(3)COH rather than an oxametallacycle species (-CH(2)CH(2)O- for Rh( 111)), which implies that the decomposition process is structure sensitive. Further analyses on electronic structures revealed that the preference of the initial C(alpha)-H path is mainly due to the significant reduction of d-electron energy in the presence of the transition state (TS) complex, which may stabilize the TS-surface system. The present work first provides a clear picture for ethanol decomposition on stepped Rh(211), which is an important first step to completely understand the more complicated reactions, like ethanol steam reforming and electrooxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen-doped graphene (N-graphene) was reported to exhibit a good activity experimentally as an electrocatalyst of oxygen reduction reaction (ORR) on the cathode of fuel cells under the condition of electropotential of similar to 0.04 V (vs. NNE) and pH of 14. This material is promising to replace or partially replace the conventionally used Pt. In order to understand the experimental results. ORR catalyzed by N-graphene is studied using density functional theory (DFT) calculations under experimental conditions taking the solvent, surface adsorbates, and coverages into consideration. Two mechanisms, i.e., dissociative and associative mechanisms, over different N-doping configurations are investigated. The results show that N-graphene surface is covered by O with 1/6 monolayer, which is used for reactions in this work. The transition state of each elementary step was identified using four different approaches, which give rise to a similar chemistry. A full energy profile including all the reaction barriers shows that the associative mechanism is more energetically favored than the dissociative one and the removal of O species from the surface is the rate-determining step. (C) 2011 Elsevier Inc. All rights reserved.