110 resultados para Disulfide Bridge
Resumo:
This study is intended to investigate the validity of the stability diagram (SD) aided multivariate autoregressive (MAR) analysis for identifying modal parameters of a real truss bridge. The MAR models are adopted to fit the time series of the dynamic accelerations recorded from a number of observation points on the bridge; then the modal parameters are extracted from the MAR model coefficient matrix. The SD is adopted to determine statistically dominant modes. In plotting the SD, a number of stability criteria are further adopted for filtering out those modes with unstable modal parameters. By the present method, the first five modal frequencies and mode shapes are identified with very high precision, while the damping ratios are identified with high precision for the 1st mode but with poorer precision for higher modes. Moreover, the ability of the SD in selecting structural modes without getting involved in any model-order optimization problem is highlighted through a comparison study.
Resumo:
A conventional way to identify bridge frequencies is utilizing vibration data measured directly from the bridge. A drawback with this approach is that the deployment and maintenance of the vibration sensors are generally costly and time-consuming. One way to cope with the drawback is an indirect approach utilizing vehicle vibrations while the vehicle passes over the bridge. In the indirect approach, however, the vehicle vibration includes the effect of road surface roughness, which makes it difficult to extract the bridge modal properties. One solution may be subtracting signals of two trailers towed by a vehicle to reduce the effect of road surface roughness. A simplified vehicle-bridge interaction model is used in the numerical simulation; the vehicle - trailer and bridge system are modeled as a coupled model. In addition, a laboratory experiment is carried out to verify results of the simulation and examine feasibility of the damage detection by the indirect method.
Resumo:
Many of the bridges currently in use worldwide are approaching the end of their design lives. However, rehabilitating and extending the lives of these structures raises important safety issues. There is also a need for increased monitoring which has considerable cost implications for bridge management systems. Existing structural health monitoring (SHM) techniques include vibration-based approaches which typically involve direct instrumentation of the bridge and are important as they can indicate the deterioration of the bridge condition. However, they can be labour intensive and expensive. In the past decade, alternative indirect vibration-based approaches which utilise the response of a vehicle passing over a bridge have been developed. This paper investigates such an approach; a low-cost approach for the monitoring of bridge structures which consists of the use of a vehicle fitted with accelerometers on its axles. The approach aims to detect damage in the bridge while obviating the need for direct instrumentation of the bridge. Here, the effectiveness of the approach in detecting damage in a bridge is investigated using a simplified vehicle-bridge interaction (VBI) model in theoretical simulations and a scaled VBI model in a laboratory experiment. In order to identify the existence and location of damage, the vehicle accelerations are recorded and processed using a continuous Morlet wavelet transform and a damage index is established. A parametric study is carried out to investigate the effect of parameters such as the bridge span length, vehicle speed, vehicle mass, damage level and road surface roughness on the accuracy of results.
Resumo:
Tanpura string vibrations have been investigated previously using numerical models based on energy conserving schemes derived from a Hamiltonian description in one-dimensional form. Such time-domain models have the property that, for the lossless case, the numerical Hamiltonian (representing total energy of the system) can be proven to be constant from one time step
to the next, irrespective of any of the system parameters; in practice the Hamiltonian can be shown to be conserved within machine precision. Models of this kind can reproduce a jvari effect, which results from the bridge-string interaction. However the one-dimensional formulation has recently been shown to fail to replicate the jvaris strong dependence on the thread placement. As a first step towards simulations which accurately emulate this sensitivity to the thread placement, a twodimensional model is proposed, incorporating coupling of controllable level between the two string polarisations at the string termination opposite from the barrier. In addition, a friction force acting when the string slides across the bridge in horizontal direction is introduced, thus effecting a further damping mechanism. In this preliminary study, the string is terminated at the position of the thread. As in the one-dimensional model, an implicit scheme has to be used to solve the system, employing Newton's method to calculate the updated positions and momentums of each string segment. The two-dimensional model is proven to be energy conserving when the loss parameters are set to zero, irrespective of the coupling constant. Both frequency-dependent and independent losses are then added to the string, so that the model can be compared to analogous instruments. The influence of coupling and the bridge friction are investigated.
Resumo:
There have been over 3000 bridge weigh-in-motion (B-WIM) installations in 25 countries worldwide, this has led vast improvements in post processing of B-WIM systems since its introduction in the 1970’s. Existing systems are based on electrical resistance strain gauges which can be prohibitive in achieving data for long term monitoring of rural bridges due to power consumption. This paper introduces a new low-power B-WIM system using fibre optic sensors (FOS). The system consisted of a series of FOS which were attached to the soffit of an existing integral bridge with a single span of 19m. The site selection criteria and full installation process has been detailed in the paper. A method of calibration was adopted using live traffic at the bridge site and based on this calibration the accuracy of the system was determined. New methods of axle detection for B-WIM were investigated and verified in the field.
Resumo:
Bridge Weigh in Motion (B-WIM) uses accurate sensing systems to transform an existing bridge into a mechanism to determine actual traffic loading. This information on traffic loading can enable efficient and economical management of transport networks and is becoming a valuable tool for bridge safety assessment. B-WIM can provide site specific traffic loading on deteriorating bridges, which can be used to determine if the reduced capacity is still sufficient to allow the structure to remain operational and minimise unnecessary replacement or rehabilitation costs and prevent disruption to traffic. There have been numerous reports on the accuracy classifications of existing B-WIM installations and some common issues have emerged. This paper details some of the recent developments in B-WIM which were aimed at overcoming these issues. A new system has been developed at Queens University Belfast using fibre optic sensors to provide accurate axle detection and improved accuracy overall. The results presented in this paper show that the fibre optic system provided much more accurate results than conventional WIM systems, as the FOS provide clearer signals at high scanning rates which require less filtering and less post processing. A major disadvantage of existing B-WIM systems is the inability to deal with more than one vehicle on the bridge at the same time; sensor strips have been proposed to overcome this issue. A bridge can be considered safe if the probability that load exceeds resistance is acceptably low, hence B-WIM information from advanced sensors can provide confidence in our ageing structures.
Resumo:
In recent years, Structural Health Monitoring (SHM) systems have been developed to monitor bridge deterioration, assess real load levels and hence extend bridge life and safety. A road bridge is only safe if the stresses caused by the passing vehicles are less than the capacity of the bridge to resist them. Conventional SHM systems can be used to improve knowledge of the bridges capacity to resist stresses but generally give no information on the causes of any increase in stresses (based on measuring strain). The concept of in Bridge Weigh-in-Motion (B-WIM) is to establish axle loads, without interruption to traffic flow, by using strain sensors at a bridge soffit and subsequently converting the data to real time axle loads or stresses. Recent studies have shown it would be most beneficial to develop a portable system which can be easily attached to existing and new bridge structures for a specified monitoring period. The sensors could then be left in place while the data acquisition can be moved for various other sites. Therefore it is necessary to find accurate sensors capable of capturing peak strains under dynamic load and suitable methods for attaching these strain sensors to existing and new bridge structures. Additionally, it is important to ensure accurate strain transfer between concrete and steel, the adhesives layer and the strain sensor. This paper describes research investigating the suitably of using various sensors for the monitoring of concrete structures under dynamic vehicle load. Electrical resistance strain (ERS) gauges, vibrating wire (VW) gauges and fibre optic sensors (FOS) are commonly used for SHM. A comparative study will be carried out to select a suitable sensor for a bridge Weigh in Motion System. This study will look at fixing methods, durability, scanning rate and accuracy range. Finite element modeling is used to predict the strains which are then validated in laboratory trials.
Resumo:
Masonry arch bridges are one of the oldest forms of bridge construction and have been around for thousands of years. Brick and stone arch bridges have proven to be highly durable as most of them have remained serviceable after hundreds of years. In contrast, many bridges built of modern materials have required extensive repair and strengthening after being in service for a relatively short part of their design life. This paper describes the structural monitoring of a novel flexible concrete arch known as: FlexiArchTM. This is a bridge system that can be transported as a flat-pack system to form an arch in-situ by the use of a flexible polymeric membrane. The system has been developed under a Knowledge Transfer Partnership between Queen’s University Belfast (QUB) and Macrete Ltd. Tievenameena Bridge in Northern Ireland was a replacement bridge for the Northern Ireland Roads Service and was monitored under different axle loadings using a range of sensors including discrete fiber optic Bragg gratings to measure the change in strain in the arch ring under live loading. This paper discusses the results of a laboratory model study carried out at QUB. A scaled arch system was loaded with a simulated moving axle. Various techniques were used to monitor the arch under the moving axle load with particular emphasis on the interaction of the arch ring and engineered backfill.
Resumo:
Bridge weigh-in-motion (B-WIM), a system that uses strain sensors to calculate the weights of trucks passing on bridges overhead, requires accurate axle location and speed information for effective performance. The success of a B-WIM system is dependent upon the accuracy of the axle detection method. It is widely recognised that any form of axle detector on the road surface is not ideal for B-WIM applications as it can cause disruption to the traffic (Ojio & Yamada 2002; Zhao et al. 2005; Chatterjee et al. 2006). Sensors under the bridge, that is Nothing-on-Road (NOR) B-WIM, can perform axle detection via data acquisition systems which can detect a peak in strain as the axle passes. The method is often successful, although not all bridges are suitable for NOR B-WIM due to limitations of the system. Significant research has been carried out to further develop the method and the NOR algorithms, but beam-and-slab bridges with deep beams still present a challenge. With these bridges, the slabs are used for axle detection, but peaks in the slab strains are sensitive to the transverse position of wheels on the beam. This next generation B-WIM research project extends the current B-WIM algorithm to the problem of axle detection and safety, thus overcoming the existing limitations in current state-of–the-art technology. Finite Element Analysis was used to determine the critical locations for axle detecting sensors and the findings were then tested in the field. In this paper, alternative strategies for axle detection were determined using Finite Element analysis and the findings were then tested in the field. The site selected for testing was in Loughbrickland, Northern Ireland, along the A1 corridor connecting the two cities of Belfast and Dublin. The structure is on a central route through the island of Ireland and has a high traffic volume which made it an optimum location for the study. Another huge benefit of the chosen location was its close proximity to a nearby self-operated weigh station. To determine the accuracy of the proposed B-WIM system and develop a knowledge base of the traffic load on the structure, a pavement WIM system was also installed on the northbound lane on the approach to the structure. The bridge structure selected for this B-WIM research comprised of 27 pre-cast prestressed concrete Y4-beams, and a cast in-situ concrete deck. The structure, a newly constructed integral bridge, spans 19 m and has an angle of skew of 22.7°.
Resumo:
This paper investigates a low-cost wavelet-based approach for the preliminary monitoring of bridge structures, consisting of the use of a vehicle fitted with accelerometers on its axles. The approach aims to reduce the need for direct instrumentation of the bridge. A time-frequency analysis is carried out in order to identify the existence and location of damage from vehicle accelerations. Firstly, in theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach. A number of damage indicators are evaluated and compared. A range of parameters such as the bridge span, vehicle speed, damage level and location, signal noise and road roughness are varied in simulations. Secondly, a scaled laboratory experiment is carried out to validate the results of the theoretical analysis and assess the ability of the selected damage indicators to detect changes in the bridge response from vehicle accelerations.
Resumo:
Damage detection in bridges using vibration-based methods is an area of growing research interest. Improved assessment
methodologies combined with state-of-the-art sensor technology are rapidly making these approaches applicable for real-world
structures. Applying these techniques to the detection and monitoring of scour around bridge foundations has remained
challenging; however this area has gained attraction in recent years. Several authors have investigated a range of methods but
there is still significant work required to achieve a rounded and widely applicable methodology to detect and monitor scour.This
paper presents a novel Vehicle-Bridge-Soil Dynamic Interaction (VBSDI) model which can be used to simulate the effect of scour
on an integral bridge. The model outputs dynamic signals which can be analysed to determine modal parameters and the variation
of these parameters with respect to scour can be examined.The key novelty of this model is that it is the first numerical model for
simulating scour that combines a realistic vehicle loadingmodel with a robust foundation soil responsemodel.This paper provides a
description of the model development and explains the mathematical theory underlying themodel. Finally a case study application
of the model using typical bridge, soil, and vehicle properties is provided.
Resumo:
Bridge scour is the number one cause of failure in bridges located over waterways. Scour leads to rapid losses in foundation stiffness and can cause sudden collapse. Previous research on bridge health monitoring has used changes in natural frequency to identify damage in bridge beams. The possibility of using a similar approach to identifying scour is investigated in this paper. To assess if this approach is feasible, it is necessary to establish how scour affects the natural frequency of a bridge, and if it is possible to measure changes in frequency using the bridge dynamic response to a passing vehicle. To address these questions, a novel vehicle–bridge–soil interaction (VBSI) model was developed. By carrying out a modal study in this model, it is shown that for a wide range of possible soil states, there is a clear reduction in the natural frequency of the first mode of the bridge with scour. Moreover, it is shown that the response signals on the bridge from vehicular loading are sufficient to allow these changes in frequency to be detected.
Resumo:
A field experiment was conducted on a real continuous steel Gerber-truss bridge with artificial damage applied. This article summarizes the results of the experiment for bridge damage detection utilizing traffic-induced vibrations. It investigates the sensitivities of a number of quantities to bridge damage including the identified modal parameters and their statistical patterns, Nair’s damage indicator and its statistical pattern and different sets of measurement points. The modal parameters are identified by autoregressive time-series models. The decision on bridge health condition is made and the sensitivity of variables is evaluated with the aid of the Mahalanobis–Taguchi system, a multivariate pattern recognition tool. Several observations are made as follows. For the modal parameters, although bridge damage detection can be achieved by performing Mahalanobis–Taguchi system on certain modal parameters of certain sets of measurement points, difficulties were faced in subjective selection of meaningful bridge modes and low sensitivity of the statistical pattern of the modal parameters to damage. For Nair’s damage indicator, bridge damage detection could be achieved by performing Mahalanobis–Taguchi system on Nair’s damage indicators of most sets of measurement points. As a damage indicator, Nair’s damage indicator was superior to the modal parameters. Three main advantages were observed: it does not require any subjective decision in calculating Nair’s damage indicator, thus potential human errors can be prevented and an automatic detection task can be achieved; its statistical pattern has high sensitivity to damage and, finally, it is flexible regarding the choice of sets of measurement points.
Resumo:
In this paper, the level of dynamics, as described by the Assessment Dynamic Ratio (ADR), is measured directly through a field test on a bridge in the United Kingdom. The bridge was instrumented using fiber optic strain sensors and piezo-polymer weigh-in-motion sensors were installed in the pavement on the approach road. Field measurements of static and static-plus-dynamic strains were taken over 45 days. The results show that, while dynamic amplification is large for many loading events, these tend not to be the critical events. ADR, the allowance that should be made for dynamics in an assessment of safety, is small.