158 resultados para Crosby, Elaine
Resumo:
Numerous studies have been conducted internationally on the subject of multigenerational trauma; however, little is currently known about its existence in the context of the Northern Ireland conflict. The present study explored the outcomes of and mechanisms through which the trauma of one generation impacts on subsequent generations in this context. Using an Interpretative Phenomenological Approach (IPA), this study examined the subjective experiences, beliefs and perceptions of four mothers from Northern Ireland, all of whom had endured trauma during their childhoods. Three main master themes emerged: 1. "Attempting to cope" addressed how the trauma was dealt with, and how these efforts can be the very mechanisms through which multigenerational trauma occurs. Examples include hiding the truth, seeing the truth as dangerous, and knowing and not knowing about the trauma; 2. "The trauma still goes on" highlighted the negative outcomes and consequences of the traumatic experiences within the family such as delayed impact, symptoms and anger; and 3. "Strength through adversity" included the more positive outcomes of their experiences, such as finding meaning through suffering and making efforts to stop the cycle. The results are discussed in terms of the existing theories on multigenerational trauma, and implications for practice are explored.
Resumo:
Infection control policies recommend segregation of people with Cystic Fibrosis (CF) according to bacterial status. This involves isolating those people with cepacia from all other CF patients in order to prevent additional infection. These policies are reliant on the understanding and adherence of those colonised with cepacia. Service user reports suggest that emotions like anxiety and anger are aroused when those with cepacia are faced with cross infection measures (UK CF Trust, 2009). No studies to date investigate this anecdotal emotional reaction. This research was conducted to ask what it is like to live with cepacia, using in depth interviews. A phenomenological approach was used. Three themes that appeared to characterise the experience of living with cepacia were identified: (1) Lost Identity: cepacia can challenge one’s self identity, and along with cross infection measures lead to feeling objectified and even alienated from the CF group identity. (2) Status: Condemned: being colonised with cepacia brings with it knowledge of a certain type of restricted future, and an imagined death. There is loss of normality and hope. (3) I Am Cepacia: making decisions about preventing cross infection is influenced by medical knowledge as well as human emotions and social information; therefore adherence to these measures is fluid and contextual. These themes have real world clinical implications for all CF services, where preventing the spread of cepacia is paramount. Responsibility for cross infection is a burden and requires knowledge and understanding from both those living with and without cepacia. We need to see beyond the bacteria to the person.
Resumo:
A boronic acid moiety was found to be a critical pharmacophore for enhanced in vitro potency against wild type hepatitis C replicons and known clinical polymorphic and resistant HCV mutant replicons. The synthesis, optimization, and structure-activity relationships associated with inhibition of HCV replication in a sub-genomic replication system for a series of non-nucleoside boron-containing HCV RNA-Dependent RNA Polymerase (NS5B) inhibitors are described. A summary of the discovery of GSK5852 (3), a molecule which entered clinical trials in subjects infected with HCV in 2011, is included.
Resumo:
Xie and colleagues previously isolated the Arabidopsis COI1 gene that is required for response to jasmonates (JAs), which regulate root growth, pollen fertility, wound healing, and defense against insects and pathogens. In this study, we demonstrate that COI1 associates physically with AtCUL1, AtRbx1, and either of the Arabidopsis Skp1-like proteins ASK1 or ASK2 to assemble ubiquitin-ligase complexes, which we have designated SCF(COI1). COI1(E22A), a single amino acid substitution in the F-box motif of COI1, abolishes the formation of the SCF(COI1) complexes and results in loss of the JA response. AtRbx1 double-stranded RNA-mediated genetic interference reduces AtRbx1 expression and affects JA-inducible gene expression. Furthermore, we show that the AtCUL1 component of SCF(COI1) complexes is modified in planta, where mutations in AXR1 decrease the abundance of the modified AtCUL1 of SCF(COI1) and lead to a reduction in JA response. Finally, we demonstrate that the axr1 and coi1 mutations display a synergistic genetic interaction in the double mutant. These results suggest that the COI1-mediated JA response is dependent on the SCF(COI1) complexes in Arabidopsis and that the AXR1-dependent modification of the AtCUL1 subunit of SCF(COI1) complexes is important for JA signaling.
Resumo:
A report provided the initial findings from a research project that examined the resilience of households in Northern Ireland. Drawing on baseline survey data and qualitative interviews with households across four neighbourhoods, it outlined a range of challenges and the strategies used by households to 'get by'. The report said that, for these households, resilience was not about 'bouncing back', 'flourishing', or 'thriving' in the face of adversity, but was about not being overcome, 'getting-by', enduring, surviving, just 'getting on with things', and 'keeping their heads above the water'. The report noted the susceptibility of households to future stressors, such as welfare reform, especially those on means-tested benefits or with long-term illness or disability. Place, and relationships with family and friends, appeared to be important for resilience and future work would investigate this further. The report highlighted issues around the measurement of resilience and noted the importance of qualitative work.
Resumo:
Identifying rare, highly penetrant risk mutations may be an important step in dissecting the molecular etiology of schizophrenia. We conducted a gene-based analysis of large (>100kb), rare copy number variants (CNVs) in the Wellcome Trust Case Control Consortium 2 (WTCCC2) schizophrenia sample of 1,564 cases and 1,748 controls all from Ireland, and further extended the analysis to include an additional 5,196 UK controls. We found association with duplications at chr20p12.2 (P=0.007) and evidence of replication in large independent European schizophrenia (P=0.052) and UK bipolar disorder case-control cohorts (P=0.047). A combined analysis of Irish/UK subjects including additional psychosis cases (schizophrenia and bipolar disorder) identified 22 carriers in 11,707 cases and 10 carriers in 21,204 controls (meta-analysis CMH P value=2x10(-4) (odds ratio (OR)=11.3, 95% CI=3.7, ∞)). Nineteen of the 22 cases and 8 of the 10 controls carried duplications starting at 9.68Mb with similar breakpoints across samples. By haplotype analysis and sequencing we identified a tandem ∼149kb duplication overlapping the gene p21 Protein-Activated Kinase 7 (PAK7, also called PAK5) which was in linkage disequilibrium with local haplotypes (P=2.5x10(-21)), indicative of a single ancestral duplication event. We confirmed the breakpoints in 8/8 carriers tested and found co-segregation of the duplication with illness in two additional family members of one of the affected probands. We demonstrate that PAK7 is developmentally co-expressed with another known psychosis risk gene (DISC1) suggesting a potential molecular mechanism involving aberrant synapse development and plasticity.
Resumo:
In most complex diseases, much of the heritability remains unaccounted for by common variants. It has been postulated that lower-frequency variants contribute to the remaining heritability. Here, we describe a method to test for polygenic inheritance from lower-frequency variants by using GWAS summary association statistics. We explored scenarios with many causal low-frequency variants and showed that there is more power to detect risk variants than to detect protective variants, resulting in an increase in the ratio of detected risk to protective variants (R/P ratio). Such an excess can also occur if risk variants are present and kept at lower frequencies because of negative selection. The R/P ratio can be falsely elevated because of reasons unrelated to polygenic inheritance, such as uneven sample sizes or asymmetric population stratification, so precautions to correct for these confounders are essential. We tested our method on published GWAS results and observed a strong signal in some diseases (schizophrenia and type 2 diabetes) but not others. We also explored the shared genetic component in overlapping phenotypes related to inflammatory bowel disease (Crohn disease [CD] and ulcerative colitis [UC]) and diabetic nephropathy (macroalbuminuria and end-stage renal disease [ESRD]). Although the signal was still present when both CD and UC were jointly analyzed, the signal was lost when macroalbuminuria and ESRD were jointly analyzed, suggesting that these phenotypes should best be studied separately. Thus, our method may also help guide the design of future genetic studies of various traits and diseases.
Resumo:
Herein we report the intra- and inter-molecular assembly of a {V5O9} subunit. This mixed-valent structural motif can be stabilised as [V5O9(L1–3)4]5−/9− (1–3) by a range of organoarsonate ligands (L1–L3) whose secondary functionalities influence its packing arrangement within the crystal structures. Variation of the reaction conditions results in the dodecanuclear cage structure [V12O14(OH)4(L1)10]4− (4) where two modified convex building units are linked via two dimeric {O4VIV(OH)2VIVO4} moieties. Bi-functional phosphonate ligands, L4–L6 allow the intramolecular connectivity of the {V5O9} subunit to give hybrid capsules [V10O18(L4–6)4]10− (5–7). The dimensions of the electrophilic cavities of the capsular entities are determined by the incorporated ligand type. Mass spectrometry experiments confirm the stability of the complexes in solution. We investigate and model the temperature-dependent magnetic properties of representative complexes 1, 4, 6 and 7 and provide preliminary cell-viability studies of three different cancer cell lines with respect to Na8H2[6]·36H2O and Na8H2[7]·2DMF·29H2O.
Resumo:
Polymer extrusion is regarded as an energy-intensive production process, and the real-time monitoring of both energy consumption and melt quality has become necessary to meet new carbon regulations and survive in the highly competitive plastics market. The use of a power meter is a simple and easy way to monitor energy, but the cost can sometimes be high. On the other hand, viscosity is regarded as one of the key indicators of melt quality in the polymer extrusion process. Unfortunately, viscosity cannot be measured directly using current sensory technology. The employment of on-line, in-line or off-line rheometers is sometimes useful, but these instruments either involve signal delay or cause flow restrictions to the extrusion process, which is obviously not suitable for real-time monitoring and control in practice. In this paper, simple and accurate real-time energy monitoring methods are developed. This is achieved by looking inside the controller, and using control variables to calculate the power consumption. For viscosity monitoring, a ‘soft-sensor’ approach based on an RBF neural network model is developed. The model is obtained through a two-stage selection and differential evolution, enabling compact and accurate solutions for viscosity monitoring. The proposed monitoring methods were tested and validated on a Killion KTS-100 extruder, and the experimental results show high accuracy compared with traditional monitoring approaches.
Resumo:
Polymer extrusion, in which a polymer is melted and conveyed to a mould or die, forms the basis of most polymer processing techniques. Extruders frequently run at non-optimised conditions and can account for 15–20% of overall process energy losses. In times of increasing energy efficiency such losses are a major concern for the industry. Product quality, which depends on the homogeneity and stability of the melt flow which in turn depends on melt temperature and screw speed, is also an issue of concern of processors. Gear pumps can be used to improve the stability of the production line, but the cost is usually high. Likewise it is possible to introduce energy meters but they also add to the capital cost of the machine. Advanced control incorporating soft sensing capabilities offers opportunities to this industry to improve both quality and energy efficiency. Due to strong correlations between the critical variables, such as the melt temperature and melt pressure, traditional decentralized PID (Proportional–Integral–Derivative) control is incapable of handling such processes if stricter product specifications are imposed or the material is changed from one batch to another. In this paper, new real-time energy monitoring methods have been introduced without the need to install power meters or develop data-driven models. The effects of process settings on energy efficiency and melt quality are then studied based on developed monitoring methods. Process variables include barrel heating temperature, water cooling temperature, and screw speed. Finally, a fuzzy logic controller is developed for a single screw extruder to achieve high melt quality. The resultant performance of the developed controller has shown it to be a satisfactory alternative to the expensive gear pump. Energy efficiency of the extruder can further be achieved by optimising the temperature settings. Experimental results from open-loop control and fuzzy control on a Killion 25 mm single screw extruder are presented to confirm the efficacy of the proposed approach.