116 resultados para Congenital Leptin Deficiency
Resumo:
Congenital Erythrocytosis (CE), or congenital polycythemia, represents a rare and heterogeneous clinical entity. It is caused by deregulated red blood cell production where erythrocyte overproduction results in elevated hemoglobin and hematocrit levels. Primary congenital familial erythrocytosis is associated with low erythropoietin (Epo) levels and results from mutations in the Epo receptor gene (EPOR). Secondary congenital erythrocytosis arises from conditions causing tissue hypoxia and results in increased Epo production. These include hemoglobin variants with increased affinity for oxygen (HBB, HBA mutations), decreased production of 2,3-bisphosphoglycerate due to BPGM mutations, or mutations in the genes involved in the hypoxia sensing pathway (VHL, EPAS1 and EGLN1). Depending on the affected gene, CE can be inherited either in an autosomal dominant or recessive mode, with sporadic cases arising de novo. Despite recent important discoveries in the molecular pathogenesis of CE, the molecular causes remain to be identified in about 70% of the patients. With the objective of collecting all the published and unpublished cases of CE the COST action MPN&MPNr-Euronet developed a comprehensive internet-based database focusing on the registration of clinical history, hematological, biochemical and molecular data (http://www.erythrocytosis.org/). In addition, unreported mutations are also curated in the corresponding Leiden Open Variation Database (LOVD). This article is protected by copyright. All rights reserved.
Resumo:
Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptora- negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability.We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types. © 2014 American Association for Cancer Research.
Resumo:
Background Metronidazole is the most commonly used antimicrobial for Bacteroides fragilis infections and is recommended for prophylaxis of colorectal surgery. Metronidazole resistance is increasing and the mechanisms of resistance are not clear.
Methods A transposon mutant library was generated in B. fragilis 638R (BF638R) to identify the genetic loci associated with resistance to metronidazole.
Results Thirty-two independently isolated metronidazole-resistant mutants had a transposon insertion in BF638R_1421 that encodes the ferrous transport fusion protein (feoAB). Deletion of feoAB resulted in a 10-fold increased MIC of metronidazole for the strain. The metronidazole MIC for the feoAB mutant was similar to that for the parent strain when grown on media supplemented with excess iron, suggesting that the increase seen in the MIC of metronidazole was due to reduced cellular iron transport in the feoAB mutant. The furA gene repressed feoAB transcription in an iron-dependent manner and disruption of furA resulted in constitutive transcription of feoAB, regardless of whether or not iron was present. However, disruption of feoAB also diminished the capacity of BF638R to grow in a mouse intraperitoneal abscess model, suggesting that inorganic ferrous iron assimilation is essential for B. fragilis survival in vivo.
Conclusions Selection for feoAB mutations as a result of metronidazole treatment will disable the pathogenic potential of B. fragilis and could contribute to the clinical efficacy of metronidazole. While mutations in feoAB are probably not a direct cause of clinical resistance, this study provides a key insight into intracellular metronidazole activity and the link with intracellular iron homeostasis.
Resumo:
Congenital anomalies (CA) are the paradigm example of rare diseases liable to primary prevention actions due to the multifactorial etiology of many of them, involving a number of environmental factors together with genetic predispositions. Yet despite the preventive potential, lack of attention to an integrated preventive strategy has led to the prevalence of CA remaining relatively stable in recent decades. The 2 European projects, EUROCAT and EUROPLAN, have joined efforts to provide the first science-based and comprehensive set of recommendations for the primary prevention of CA in the European Union. The resulting EUROCAT-EUROPLAN 'Recommendations on Policies to Be Considered for the Primary Prevention of Congenital Anomalies in National Plans and Strategies on Rare Diseases' were issued in 2012 and endorsed by EUCERD (European Union Committee of Experts on Rare Diseases) in 2013. The recommendations exploit interdisciplinary expertise encompassing drugs, diet, lifestyles, maternal health status, and the environment. The recommendations include evidence-based actions aimed at reducing risk factors and at increasing protective factors and behaviors at both individual and population level. Moreover, consideration is given to topics specifically related to CA (e.g. folate status, teratogens) as well as of broad public health impact (e.g. obesity, smoking) which call for specific attention to their relevance in the pre- and periconceptional period. The recommendations, reported entirely in this paper, are a comprehensive tool to implement primary prevention into national policies on rare diseases in Europe.
Resumo:
The timing of thyroxine (T4) replacement treatment in congenital hypothyroidism (CH) has been suggested to be important for optimizing cognitive recovery in humans; however this has not been fully established using modern animal models of CH. Consequently, the current studies investigated the ameliorating effects of postnatal T4 treatment on neuropathology and behavior in CH rats. Rat dams were administered methimazole to produce CH offspring, then brain tissue from male CH pups was analyzed to determine the effects of postnatal (P3, P7, P14 and P21) T4 treatment on hippocampal dendritic branching and the expression of nerve growth factor (NGF). Two operant behavioral procedures were employed to confirm and extend previous findings obtained using this model, and to investigate timelines for instigating T4 treatment on improved behavioral outcomes. T4 treatment initiated at P14 was protective of a reduction in dendritic branching in the hippocampus, and initiated at P7 was protective of a reduction of NGF expression in the fimbria of the hippocampus. Induction of CH did not affect the acquisition of simple operant response rules but had a significant effect on the acquisition of complex operant rules subsequently imposed. Furthermore, T4 treatment initiated at P3 protected learning deficits seen following the imposition of complex operant response rules. These findings indicate T4 treatment initiated at P7 is sufficient for the protection of hippocampal NGF expression and dendritic branching but for the protection of complex behavioral abilities T4 treatment is necessary prior to or approximating P3.