232 resultados para CONSENSUS PREDICTION
Resumo:
Over the past ten years, a variety of microRNA target prediction methods has been developed, and many of the methods are constantly improved and adapted to recent insights into miRNA-mRNA interactions. In a typical scenario, different methods return different rankings of putative targets, even if the ranking is reduced to selected mRNAs that are related to a specific disease or cell type. For the experimental validation it is then difficult to decide in which order to process the predicted miRNA-mRNA bindings, since each validation is a laborious task and therefore only a limited number of mRNAs can be analysed. We propose a new ranking scheme that combines ranked predictions from several methods and - unlike standard thresholding methods - utilises the concept of Pareto fronts as defined in multi-objective optimisation. In the present study, we attempt a proof of concept by applying the new ranking scheme to hsa-miR-21, hsa-miR-125b, and hsa-miR-373 and prediction scores supplied by PITA and RNAhybrid. The scores are interpreted as a two-objective optimisation problem, and the elements of the Pareto front are ranked by the STarMir score with a subsequent re-calculation of the Pareto front after removal of the top-ranked mRNA from the basic set of prediction scores. The method is evaluated on validated targets of the three miRNA, and the ranking is compared to scores from DIANA-microT and TargetScan. We observed that the new ranking method performs well and consistent, and the first validated targets are elements of Pareto fronts at a relatively early stage of the recurrent procedure. which encourages further research towards a higher-dimensional analysis of Pareto fronts. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11, and rs10941679 at 5p12, and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction. The minor alleles of rs4973768 and rs10941679 were associated with increased breast cancer risk for BRCA2 carriers (per-allele HR - 1.10, 95% CI: 1.03-1.18, P - 0.006 and HR - 1.09, 95% CI: 1.01-1.19, P = 0.03, respectively). Neither SNP was associated with breast cancer risk for BRCA1 carriers, and rs6504950 was not associated with breast cancer for either BRCA1 or BRCA2 carriers. Of the 9 polymorphisms investigated, 7 were associated with breast cancer for BRCA2 carriers (FGFR2, TOX3, MAP3K1, LSP1, 2q35, SLC4A7, 5p12, P 7 = 10 x (11) - 0.03), but only TOX3 and 2q35 were associated with the risk for BRCA1 carriers (P = 0.0049, 0.03, respectively). All risk-associated polymorphisms appear to interact multiplicatively on breast cancer risk for mutation carriers. Based on the joint genotype distribution of the 7 risk-associated SNPs in BRCA2 mutation carriers, the 5% of BRCA2 carriers at highest risk (i.e., between 95th and 100th percentiles) were predicted to have a probability between 80% and 96% of developing breast cancer by age 80, compared with 42%
Resumo:
In the late nineteenth century, a number of writers turned to anthropology to predict a socialist future. They included prominent revolutionary socialists: Friedrich Engels, William Morris and members of the Socialist League. Contextualising the appropriation of the anthropologist Lewis Henry Morgan by such readers, this article also pays particular attention to socialist popularisations of anthropology, particularly those by Morris and his fellow writers in his penny weekly, the Commonweal. Focusing on Morris’s articles on ancient society helps to illuminate his own understanding of history, art and socialism. It also sheds new light on his predictive fiction News from Nowhere, which was originally read alongside Commonweal non-fiction. Both, I will argue, encouraged readers to see the future in the struggles of the ancient past.
Resumo:
Ice accretions can significantly change the aerodynamic performance of wings and rotor blades. Significant performance degradation can occur when ice accreations cause regions of separated flow, to predict this change implies, at a minimum, the solution of the Reynolds-Averaged Navier-Stokes equations. This paper presents validation for two generic cases involving the flow over aerofoil sections with added synthetic ice shapes. Results were obtained for two aerofoils, namely the NACA 23012 and a generic multi-element configuration. These results are compared with force and pressure coefficient measurements obtained in the NASA LTPT wind-tunnel for the NACA 23012, and force, PIV and boundary-layer measurements obtained at DNW for the multi-clement case. The level of agreement is assessed in the context of industrial requirements.
Resumo:
In this paper we investigate the influence of a power-law noise model, also called noise, on the performance of a feed-forward neural network used to predict time series. We introduce an optimization procedure that optimizes the parameters the neural networks by maximizing the likelihood function based on the power-law model. We show that our optimization procedure minimizes the mean squared leading to an optimal prediction. Further, we present numerical results applying method to time series from the logistic map and the annual number of sunspots demonstrate that a power-law noise model gives better results than a Gaussian model.