98 resultados para CC BOND
Resumo:
Strengthening reinforced concrete (RC) structures by externally bonded FRP composites has been widely used for static loading and seismic retrofitting since 1990s. More recently many studies on strengthening concrete and masonry structures with externally bonded FRP for improved blast and impact resistance in protective engineering have also been conducted. The bond behaviour between the FRP and concrete plays a critical role in a strengthening system with externally bonded FRP. However, the understanding of how the bond between FRP and concrete performs under high strain rate is severely limited. Due to the dynamic characteristics of blast and impact loading, the bond behaviour between FRP and concrete under such loading is very different from that under static loading. This paper presents a study on the dynamic bond-slip behaviour based on both the numerical analysis and test results. A dynamic bond-slip model is proposed in this paper.
Resumo:
Strengthening RC structures with near-surface mounted (NSM) fibre reinforced polymer (FRP) composites has a number of advantages compared with that with externally bonded (EB) FRP sheets/plates. As with EB FRP, the performance of the bond between NSM FRP and concrete is one of the key factors affecting the behaviour of the strengthened structure. This paper presents a numerical investigation into the behaviour of NSM FRP loaded at its both ends to simulate the NSM FRP-toconcrete bond between two adjacent cracks in RC members. The main objective of this study is to quantitatively clarify the effect of the bondline damage during slip reversal on the ultimate load (bond strength). The results show that the bondline damage has a significant effect on the load-carrying capacity of the NSM FRP-to-concrete bonded interface and should be considered in FE modeling of the interface.
Consequences and solutions to our abysmal neglect of the bond-slip be-haviour in reinforced concrete