169 resultados para CANDIDATE STARS
Resumo:
The light curve of PA-99-N2, one of the recently announced microlensing candidates toward M31, shows small deviations from the standard Paczynski form. We explore a number of possible explanations, including correlations with the seeing, the parallax effect, and a binary lens. We find that the observations are consistent with an unresolved red giant branch or asymptotic giant branch star in M31 being microlensed by a binary lens. We find that the best-fit binary lens mass ratio is similar to1.2x10(-2), which is one of the most extreme values found for a binary lens so far. If both the source and lens lie in the M31 disk, then the standard M31 model predicts the probable mass range of the system to be 0.02-3.6 M-circle dot (95% confidence limit). In this scenario, the mass of the secondary component is therefore likely to be below the hydrogen-burning limit. On the other hand, if a compact halo object in M31 is lensing a disk or spheroid source, then the total lens mass is likely to lie between 0.09 and 32 M-circle dot, which is consistent with the primary being a stellar remnant and the secondary being a low-mass star or brown dwarf. The optical depth (or, alternatively, the differential rate) along the line of sight toward the event indicates that a halo lens is more likely than a stellar lens, provided that dark compact objects comprise no less than 15% (or 5%) of halos.
Resumo:
The POINT-AGAPE collaboration is currently searching for massive compact halo objects (MACHOs) toward the Andromeda galaxy (M31). The survey aims to exploit the high inclination of the M31 disk, which causes an asymmetry in the spatial distribution of M31 MACHOs. Here, we investigate the effects of halo velocity anisotropy and flattening on the asymmetry signal using simple halo models. For a spherically symmetric and isotropic halo, we find that the underlying pixel lensing rate in far-disk M31 MACHOs is more than 5 times the rate of near-disk events. We find that the asymmetry is further increased by about 30% if the MACHOs occupy radial orbits rather than tangential orbits, but it is substantially reduced if the MACHOs lie in a flattened halo. However, even for halos with a minor- to major-axis ratio of q = 0.3, the number of M31 MACHOs in the far side outnumber those in the near side by a factor of similar to2. There is also a distance asymmetry, in that the events on the far side are typically farther from the major axis. We show that, if this positional information is exploited in addition to number counts, then the number of candidate events required to confirm asymmetry for a range of flattened and anisotropic halo models is achievable, even with significant contamination by variable stars and foreground microlensing events. For pixel lensing surveys that probe a representative portion of the M31 disk, a sample of around 50 candidates is likely to be sufficient to detect asymmetry within spherical halos, even if half the sample is contaminated, or to detect asymmetry in halos as flat as q = 0.3, provided less than a third of the sample comprises contaminants. We also argue that, provided its mass-to-light ratio is less than 100, the recently observed stellar stream around M31 is not problematic for the detection of asymmetry.
Resumo:
We present Gemini-N GMOS and CFHT MOS spectroscopy of Wolf-Rayet candidates in the Local Group dwarf galaxy IC 10 that were previously identified by Massey et al. and Royer et al. From the present spectroscopic survey, the WC/WN ratio for IC 10 remains unusually high, given its low metallicity, although none of the WC9 stars suspected from narrow-band imaging are confirmed. Our spectroscopy confirms 9 newly discovered Wolf-Rayet candidates from Royer et al., whilst spectral types of 14 Wolf-Rayet stars previously observed by Massey & Armandroff are refined here. In total, there are 26 spectroscopically confirmed Wolf-Rayet stars in IC 10. All but one of the fourteen WC stars are WC4-6 stars, the exception being # 10 from Massey et al., a broad-lined, apparently single WC7 star. There are a total of eleven WN stars, which are predominantly early WN3-4 stars, but include a rare WN10 star, # 8 from Royer et al. # 5 from Massey et al. is newly identified as a transition WN/C star. Consequently, the WC/WN ratio for IC10 is 14/11similar to1.3, unusually high for a metal-poor galaxy. Re-evaluating recent photometric data of Massey & Holmes, we suggest that the true WC/WN ratio may not be as low as similar to0.3. Finally, we present ground-based finding charts for all confirmed WR stars, plus HST/WFPC2 charts for twelve cases.
Resumo:
We report the discovery of a microlensing candidate projected 2'54
Resumo:
We report the discovery of a short-duration microlensing candidate in the northern field of the POINT-AGAPE pixel lensing survey toward M31. Almost certainly, the source star has been identified on Hubble Space Telescope archival images, allowing us to infer an Einstein crossing time of t(E) = 10.4 days, a maximum magnification of A(max) similar to 18, and a lens-source proper motion mu (rel) > 0.3 mu as day(-1). The event has a projected separation of 8' from the center of M31, beyond the bulk of the stellar lens population. There are three plausible identifications/locations for the lensing object: a massive compact halo object (MACHO) in either M31 or the Milky Way, or a star in the M31 disk. The most probable mass is 0.06 M-. for an M31 MACHO, 0.02 M-. for a Milky Way MACHO, and 0.2 M-. for an M31 stellar lens. While the stellar interpretation is possible, the MACHO interpretation is the most probable for halo fractions above 20%.
Resumo:
We present deep, narrow-hand photometry of the Local Group starburst galaxy IC10. Our dedicated photometric system provides detection of 13 new Wolf-Rayet (WR) stars and allows spectral subtypes to be assigned. Three of these new stars appear to be WC9 subtypes. If confirmed, these would be the very first WC9 stars ever detected in a low metallicity environment, hence putting strong new constraints on the formation and evolution models of massive stars. Eight of the new WR stars are of the WC subtype, which does not significantly modify the anomalously high WC/WN ratio in IC10. However it is likely that a number of Wolf-Rayet stars of the WNE and WC spectral subtypes are still to be discovered in the heart of the galaxy.
Resumo:
We present a parallax measurement for the very cool degenerate WD 0346+246, the serendipitous discovery of which was reported by Hambly et al, We find an absolute parallax of 36 +/- 5 mas, yielding a distance estimate of 28 +/- 4pc. The resulting absolute visual magnitude of the object is M-V = 16.8 +/- 0.3, making it the second-lowest luminosity white dwarf currently known. We use the distance estimate and measured proper motion to show that the object has kinematics consistent with membership of the Galactic halo. WD 0346+246 is therefore by far the coolest and least luminous of only a handful of plausible halo white dwarf candidates. As such, the object has relevance to the ongoing debate concerning the results of microlensing experiments and the nature of any baryonic dark matter component to the Galactic halo residing in stellar remnants.
Resumo:
We have begun a search for early-type stars towards the galactic centre which are potentially young objects situated within the inner few kiloparsecs of the disk. U and V (or I) band photographic photometry from the UK Schmidt Telescope has been obtained to identify the bluest candidates in nineteen Schmidt fields (centred close to the galactic centre). We have spectroscopically observed these targets for three fields with the FLAIR multi-fibre system to determine their spectral types. In particular; ten early B-type stars have been identified and equivalent width measurements of their Balmer and HeI lines have been used to estimate atmospheric parameters. These early-type objects have magnitudes in the range 11.5 less than or equal to V less than or equal to 16.0, and our best estimates of their distance (given probable highly variable reddening in this direction together with errors in the plate photometry) suggest that some of them originated close to (i.e R-g
Resumo:
As part of a programme to investigate spatial variations in the Galactic chemical composition, we have been searching for normal B-type stars and A-type supergiants near the Galactic center. During this search we have found eleven peculiar stars, and in some cases performed detailed abundance analyses of them which suggest that they may be at a post-AGB evolutionary stage.
Resumo:
Differential carbon abundances (based on the C II doublet at 6580 Angstrom) are presented for eight early type stars, towards the Galactic anti-centre. All the stars have similar atmospheric parameters with effective temperatures in the range 25000-29000 K and surface gravities between log g = 3.9-4.3 dex. The derived photospheric abundances vary by up to 0.6 dex, and with the exception of one star, RLWT-41, the differential abundances are found to be closely correlated with those of nitrogen. This implies that both elements may have been formed by similar mechanisms and that the lack of correlation between the nitrogen and oxygen abundances previously found in this sample is not directly due to CNO-processed core material being mixed to the stellar surface.
Resumo:
Context. NGC 346-013 is a peculiar double-lined eclipsing binary in the Small Magellanic Cloud (SMC) discovered by the VLT-FLAMES survey of massive stars.
Resumo:
Studies have confirmed the key role of Bacillus anthracis protective antigen (PA) in the US and UK human anthrax vaccines. However, given the tripartite nature of the toxin, other components, including lethal factor (LF), are also likely to contribute to protection. We examined the antibody and T cell responses to PA and LF in human volunteers immunized with the UK anthrax vaccine (AVP). Individual LF domains were assessed for immunogenicity in mice when given alone or with PA. Based on the results obtained, a novel fusion protein comprising D1 of LF and the host cell-binding domain of PA (D4) was assessed for protective efficacy. Murine protection studies demonstrated that both full-length LF and D1 of LF conferred complete protection against a lethal intraperitoneal challenge with B. anthracis STI spores. Subsequent studies with the LFD1-PAD4 fusion protein showed a similar level of protection. LF is immunogenic in humans and is likely to contribute to the protection stimulated by AVP. A single vaccine comprising protective regions from LF and PA would simplify production and confer a broader spectrum of protection than that seen with PA alone.