130 resultados para Benjamin, of Tudela, active 12th century
Resumo:
This paper considers the recent proliferation of Belfast‘s =Quarters‘ as part of global trends towards the theming of city space, and as a response to the particular situation of Belfast at the beginning of the twenty-first century. It focuses on the Gaeltacht Quarter, a site that exemplifies the difficulty of applying the internationally popular model of cultural difference as a resource for the production of tourist revenue to the context of contested cities. The =quartering‘ of Belfast is represented as a response to post-industrial and post-conflict predicaments this city shares with many others. I consider how the urban context is sometimes exploited, as in exhortations to investors and tourists to contribute to Belfast‘s transformation from =a city of two halves‘ to =a city of seven quarters‘, and sometimes obscured, as in the recent re-invention of the Quarters as remnants of the city‘s distant past.
Resumo:
Background and Aim: Inflammatory bowel diseases (IBD) are immune-mediated chronic diseases that are characterized by an overreaction of the intestinal immune system to the intestinal microbiota. VSL#3, a mixture of 8 different lactic acid bacteria, is a clinically relevant probiotic compound in the context of IBD, but the bacterial structures and molecular mechanisms underlying the observed protective effects are largely unknown. The intestinal epithelium plays a very important role in the maintenance of the intestinal homeostasis, as the intestinal epithelial cells (IEC) are capable of sensing, processing, and reacting upon signals from the luminal microbiota and the intestinal immune system. This immune regulatory function of the IEC is lost in IBD owing to dysregulated activation of the IEC. Thus, the aim of this study was to reveal protective mechanisms of VSL#3 on IEC function.
Results: In vitro, VSL#3 was found to selectively inhibit activation-induced secretion of the T-cell chemokine interferon-inducible protein (IP)-10 in IEC. Cell wall-associated proteins of VSL#3-derived Lactobacillus casei (L. casei) were identified to be the active anti-inflammatory component of VSL#3. Mechanistically, L. casei did not impair initial IP-10 protein production, but induced posttranslational degradation of IP-10 in IEC. Feeding studies in tumor necrosis factor (TNF)(Delta ARE/+) mice, a mouse model for experimental ileitis, revealed that neither VSL#3 nor L. casei is capable of reducing ileal inflammation. Even preweaning feeding of VSL#3 did not prevent the development of severe ileitis in TNF Delta ARE/+ mice. In contrast, VSL#3 feeding studies in IL-10-/- mice, a model for experimental colitis, revealed that VSL#3 has local, intestinal compartment-specific protective effects on the development of inflammation. Reduced histopathologic inflammation in the cecum of IL-10-/- mice after VSL#3 treatment was found to correlate with reduced levels of IP-10 protein in primary cecal epithelial cells.
Conclusion and Outlook: These results suggest that the inhibitory effect of VSL#3-derived L. casei on IP-10 secretion in IEC is an important probiotic mechanism that contributes to the anti-inflammatory effects of VSL#3 in specific subsets of patients with IBD. An important future aim is the identification of the active probiotic protein, which could serve as a basis for the development of new efficient therapies in the context of IBD.
Resumo:
Analyses of the widths and shifts of optically thin emission lines in the ultraviolet spectrum of the active dwarf e Eri (K2 V) are presented. The spectra were obtained using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer. The linewidths are used to find the non-thermal energy density and its variation with temperature from the chromosphere to the upper transition region. The energy fluxes that could be carried by Alfvén and acoustic waves are investigated, to test their possible roles in coronal heating. Acoustic waves do not appear to be a viable means of coronal heating. There is, in principle, ample flux in Alfvén waves, but detailed calculations of wave propagation are required before definite conclusions can be drawn concerning their viability. The high sensitivity and spectral resolution of the above instruments have allowed two-component Gaussian fits to be made to the profiles of the stronger transition region lines. The broad and narrow components that result share some similarities with those observed in the Sun, but in e Eri the broad component is redshifted relative to the narrow component and contributes more to the total line flux. The possible origins of the two components and the energy fluxes implied are discussed. On balance our results support the conclusion of Wood, Linsky & Ayres, that the narrow component is related to Alfvén waves reaching to the corona, but the origin of the broad component is not clear.
Resumo:
The lipopolysaccharide (LPS) O-antigen of Yersinia enterocolitica serotype O:8 is formed by branched pentasaccharide repeat units that contain N-acetylgalactosamine (GalNAc), L-fucose (Fuc), D-galactose (Gal), D-mannose (Man), and 6-deoxy-D-gulose (6d-Gul). Its biosynthesis requires at least enzymes for the synthesis of each nucleoside diphosphate-activated sugar precursor; five glycosyltransferases, one for each sugar residue; a flippase (Wzx); and an O-antigen polymerase (Wzy). As this LPS shows a characteristic preferred O-antigen chain length, the presence of a chain length determinant protein (Wzz) is also expected. By targeted mutagenesis, we identify within the O-antigen gene cluster the genes encoding Wzy and Wzz. We also present genetic and biochemical evidence showing that the gene previously called galE encodes a UDP-N-acetylglucosamine-4-epimerase (EC 5.1.3.7) required for the biosynthesis of the first sugar of the O-unit. Accordingly, the gene was renamed gne. Gne also has some UDP-glucose-4-epimerase (EC 5.1.3.2) activity, as it restores the core production of an Escherichia coli K-12 galE mutant. The three-dimensional structure of Gne was modeled based on the crystal structure of E. coli GalE. Detailed structural comparison of the active sites of Gne and GalE revealed that additional space is required to accommodate the N-acetyl group in Gne and that this space is occupied by two Tyr residues in GalE whereas the corresponding residues present in Gne are Leu136 and Cys297. The Gne Leu136Tyr and Cys297Tyr variants completely lost the UDP-N-acetylglucosamine-4-epimerase activity while retaining the ability to complement the LPS phenotype of the E. coli galE mutant. Finally, we report that Yersinia Wzx has relaxed specificity for the translocated oligosaccharide, contrary to Wzy, which is strictly specific for the O-unit to be polymerized.
Resumo:
Large regions of recurrent genomic loss are common in cancers; however, with a few well-characterized exceptions, how they contribute to tumor pathogenesis remains largely obscure. Here we identified primate-restricted imprinting of a gene cluster on chromosome 20 in the region commonly deleted in chronic myeloid malignancies. We showed that a single heterozygous 20q deletion consistently resulted in the complete loss of expression of the imprinted genes L3MBTL1 and SGK2, indicative of a pathogenetic role for loss of the active paternally inherited locus. Concomitant loss of both L3MBTL1 and SGK2 dysregulated erythropoiesis and megakaryopoiesis, 2 lineages commonly affected in chronic myeloid malignancies, with distinct consequences in each lineage. We demonstrated that L3MBTL1 and SGK2 collaborated in the transcriptional regulation of MYC by influencing different aspects of chromatin structure. L3MBTL1 is known to regulate nucleosomal compaction, and we here showed that SGK2 inactivated BRG1, a key ATP-dependent helicase within the SWI/SNF complex that regulates nucleosomal positioning. These results demonstrate a link between an imprinted gene cluster and malignancy, reveal a new pathogenetic mechanism associated with acquired regions of genomic loss, and underline the complex molecular and cellular consequences of "simple" cancer-associated chromosome deletions.
Resumo:
In situ EXAFS has been used to examine the hydrogen effect on the selective catalytic reduction of NOx over silver/alumina catalysts. For all SCR conditions used, with or without co-reductant (H-2 or CO), the catalyst structure remained the same. Significant changes in the catalyst were only found under reducing conditions. The enhanced activity found in the presence of hydrogen is thought to be due to a chemical effect and not the result of a change in the structure of the active site.
Resumo:
Consumption of arsenic (As) wine is a traditional activity during the classic Chinese festival of Duanwu, colloquially known worldwide as the Dragon Boat Day. Arsenic wine is drunk on the morning of the fifth day of the fifth lunar calendar month to commemorate the death of Qu Yuan, a famed Chinese poet who drowned himself in protest of a corrupt government, and to protect against ill fortune. Although realgar minerals are characteristically composed of sparingly soluble tetra-arsenic tetra-sulfides (As(4)S(4)), purity does vary with up to 10% of As being present as non-sulfur bound species, such as arsenate (As(v)) and arsenite (As(III)). Despite, the renewed interest in As speciation and the bioaccessibility of the active As components in realgar based Chinese medicines, little is known about the safety surrounding the cultural practice of drinking As wine. In a series of experiments the speciation and solubility of As in a range of wines were investigated. Furthermore, a simulated gastrointestinal system was employed to predict the impact of digestive processes on As bioavailability. The predominant soluble As species found in all the wines were As(III) and As(v). Based on typical As wine recipes employing 0.1 g realgar mL(-1) wine, the concentration of dissolved As ranged from ca. 100 to 400 mg L(-1) depending on the ethanol content of the preparation: with the As solubility found to be higher in wines with a lower proportion of ethanol. Based on a common 100 mL measure of wine with a concentration of 400 mg As L(-1), the amount of soluble As would equate to around half of the acute minimal lethal dose for adults. This is likely an underestimate of the bioaccessible concentration, as a three-fold increase in bioaccessibility could be observed in the intestinal phase based on the results from the stimulated gastrointestinal system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.
Resumo:
This monograph examines the nature and significance of the re-emergence of private property in rapidly changing post-Mao China.
In examining this issue, the study explores a key dichotomy in Chinese law, that is, ‘public versus private’, and examines the manner in which the Chinese define ownership. The study stresses the importance of lack of clarity in the boundaries between the public and the private in property rights.
While there is a limited move towards the recognition of private property in real estate in contemporary China, this analysis also shows that ownership in the law, and ownership as understood and practised socially, often diverge significantly.
From the Qing dynasty reforms of the late nineteenth century onwards, ‘modernist’ law and entrenched social practice have often opposed each other. In contrast to the official, and indeed legal, support for unitary and exclusive property rights, the reality of the property regime has been a fragmentation of property rights. ‘Modern’ conceptions and theories of property rights emerged in the context of nation-building from the late Qing onwards, and unitary and exclusive property rights were considered as ‘badges’ of modernity.
These conceptions and theories served (and still serve) the purposes of control and governance but were, and still are, often resisted in social practice and popular thinking, leading to alienation and conflict. As a result, analysis of the nature and the social and political implications of re-emerging private property rights provides important insights for our understanding of the changing nature of modern China.
Resumo:
Amphibian skin secretions contain a plethora of pharmacologically-active substances and represent established sources of bioactive peptides, including tachykinins. Tachykinins are one of the most widely-studied peptide families in animals and are found in neuroendocrine tissues from the lowest vertebrates to mammals. They are characterized by the presence of a highly-conserved C-terminal pentapeptide amide sequence motif (-FXGLM-amide) that also constitutes the bioactive core of the peptide. Amidation of the C-terminal methioninyl residue appears to be mandatory in the expression of biological activity. Here, we describe the isolation, characterization and molecular cloning of a novel tachykinin named ranachensinin, from the skin secretion of the Chinese brown frog, Rana chensinensis. This peptide, DDTSDRSN QFIGLM-amide, contains the classical C-terminal pentapeptide amide motif in its primary structure and an Ile (I) residue in the variable X position. A synthetic replicate of ranachensinin, synthesized by solid-phase Fmoc chemistry, was found to contract the smooth muscle of rat urinary bladder with an EC50 of 20.46 nM. However, in contrast, it was found to be of low potency in contraction of rat ileum smooth muscle with an EC50 of 2.98 µM. These data illustrate that amphibian skin secretions continue to provide novel bioactive peptides with selective effects on functional targets in mammalian tissues.
Resumo:
The reactivity of the Ru(0 0 0 1) electrode towards the adsorption and electrooxidation of CO and methanol has been studied by variable-temperature in situ FTIR spectroscopy in both perchloric acid and sodium hydroxide solution, and the results interpreted in terms of the surface chemistry of the Ru(0 0 0 1) electrode. Both linear (CO) and threefold hollow (CO) binding CO adsorbates (bands at 1970-2040 and 1770-1820 cm, respectively) were observed on the Ru(0 0 0 1) electrode in both 0.1 M HClO and 0.1 M NaOH solutions from the CO adsorption. In the acid solution, CO was detected as the main adsorbed species on Ru(0 0 0 1) surface over all the potential region studied. In contrast, in the alkaline solution, more CO than CO was detected at lower potentials, whilst increasing the potential resulted in the transformation of CO to CO. At higher potentials, the oxidation of the adsorbed CO took place via reaction with the active (1 × 1)-O oxide/hydroxide. It was found that no dissociative adsorption or electrooxidation of methanol took place at the Ru(0 0 0 1) at potentials below 900 mV vs Ag/AgCl in perchloric acid solution at both 20 and 55°C. However, in the alkaline solution, methanol did undergo dissociative adsorption, to form linearly adsorbed CO (CO) with little or no CO adsorbed at threefold hollow sites (CO) at both 20 and 55°C. Increasing the temperature from 20 to 55°C clearly facilitated the methanol dissociative adsorption to CO and also enhanced the electrooxidation of the CO. At the higher potentials, significant oxidation of methanol to CO and methyl formate in acid solution and to bicarbonate and formate in alkaline solution, was observed, which was attributed to the formation of an active RuO phase on the Ru(0 0 0 1) surface, in agreement with our previous studies. © 2003 Elsevier Ltd. All right reserved.
Resumo:
The adsorption and electro-oxidation of formaldehyde, formic acid and methanol at the Ru(0001) electrode in perchloric acid solution have been studied as a function of temperature, potential and time using in situ FTIR spectroscopy, and the results interpreted in terms of the surface chemistry of the Ru(0001) electrode and compared to those obtained during our previous studies on the adsorption of CO under the same conditions. It was found that no dissociative adsorption or electro-oxidation of methanol takes place at Ru(0001) at potentials 1000 mV, both the oxidation of formic acid to CO and the oxidation of formaldehyde to both CO and formic acid were significantly increased, and the oxidation of methanol to CO and methyl formate was observed, all of which were attributed to the formation of an active RuO phase on the Ru(0001) surface.
Resumo:
The electro-oxidations of methanol and formic acid at a Ru(0001) electrode in perchloric acid solution have been investigated as functions of temperature, potential and time using in-situ FTIR spectroscopy, and the results compared to those obtained during our previous studies on the adsorption and electro-oxidation of CO under the same conditions. It was found that no dissociative adsorption or electro-oxidation of methanol takes place at the Ru(0001) at potentials 1000 mV, the oxidation of formic acid to CO was significantly increased, and the oxidation of methanol to CO and methyl formate was observed, both of which were attributed to the formation of an active RuO phase on the Ru(0001) surface.
Resumo:
Amphibian skin secretions contain a broad spectrum of biologically active compounds, particularly antimicrobial peptides, which are considered to constitute a first line of defence against bacterial infection. Here we describe the identification of two prototype peptides representing a novel structural class of antimicrobial peptide from the skin secretion of the oriental broad-folded frog, Hylarana latouchii. Named hylaranin-L1 (GVLSAFKNALPGIMKIIVamide) and hylaranin-L2 (GVLSVIKNALPGIMRFIAamide), both peptides consist of 18 amino acid residues, are C-terminally amidated and are of unique primary structures. Their primary structures were initially deduced by MS/MS fragmentation sequencing from reverse-phase HPLC fractions of skin secretion that demonstrated antimicrobial activity. Subsequently, their precursor-encoding cDNAs were cloned from a skin secretion-derived cDNA library and their primary structures were confirmed unequivocally. Synthetic replicates of both peptides exhibited broad-spectrum antimicrobial activity with mean inhibitory concentrations (MICs) of 34 µM against Gram-negative Escherichia coli, 4.3 µM against Gram-positive Staphylococcus aureus and 4–9 µM against the yeast, Candida albicans. Both peptides exhibited little haemolytic activity (<6 %) at the MICs for S. aureus and C. albicans. Amphibian skin secretions thus continue to provide novel antimicrobial peptide structures that may prove to be lead compounds in the design of new classes of anti-infection therapeutics.
Resumo:
One of the most widespread and abundant families of pharmacologically active peptides in amphibian defensive skin secretions is the bradykinins and related peptides. Despite retaining certain primary structural attributes that assign them to this peptide family, bradykinins and related peptides are unique among amphibian skin peptides in that they exhibit a wide range of primary structural variations, post-translational modifications and/or N-terminal or C-terminal extensions. Initially it was believed that their high degree of primary structural heterogeneity was reflective of random gene mutations within species, but latterly, there is an increasing body of evidence that the spectrum of structural modifications found within this peptide family is reflective of the vertebrate predator spectrum of individual species. Here we report the discovery of ornithokinin (avian bradykinin – Thr6, Leu8-bradykinin) in the skin secretion of the Chinese bamboo odorous frog, Odorrana versabilis. Molecular cloning of its biosynthetic precursor-encoding cDNA from a skin secretion-derived cDNA library revealed a deduced open-reading frame of 86 amino acid residues, encoding a single copy of ornithokinin towards its C-terminus. The domain architecture of this ornithokinin precursor protein was consistent with that of a typical amphibian skin peptide and quite different to that of the ornithokininogen from chicken plasma. Ornithokinin was reported to induce hypotension in the chicken and to contract the chicken oviduct but to have no obvious effect on the rat uterus. However, in this study, synthetic ornithokinin was found to contract the rat ileum (EC50 = 539 nM) and to increase contraction frequency in the rat uterus (EC50 = 1.87 μM).