133 resultados para Anxiolytic Agents
Resumo:
Despite their widespread use, there is a paucity of information concerning the effect of storage on the rheological properties of pharmaceutical gels that contain organic and inorganic additives. Therefore, this study examined the effect of storage (1 month at either 4 or 37 degrees C) on the rheological and mechanical properties of gels composed of either hydroxypropylmethylcellulose (3-5% w/w, HPMC) or hydroxyethylcellulose (3-5% w/w, HEC) and containing or devoid of dispersed organic (tetracycline hydrochloride 2% w/w) or inorganic (iron oxide 0.1% w/w) agents. The mechanical properties were measured using texture profile analysis whereas the rheological properties were analyzed using continuous shear rheometry and modeled using the Power Law model. All formulations exhibited pseudoplastic flow with minimal thixotropy. Increasing polymer concentration (3-5% w/w) significantly increased the consistency, hardness, compressibility, and adhesiveness of the formulations due to increased polymer chain entanglement. Following storage (I month at 4 and 37 degrees C) the consistency and mechanical properties of additive free HPMC gets (but not HEC gels) increased, due to the time-dependent development of polymer chain entanglements. Incorporation of tetracycline hydrochloride significantly decreased and increased the rheological and mechanical properties of HPMC and HEC gels, respectively. Conversely, the incorporation of iron oxide did not affect these properties. Following storage, the rheological and mechanical properties of HPMC and HEC formulations were markedly compromised. This effect was greater following storage at 37 than at 4 degrees C and, additionally, greater in the presence of tetracycline hydrochloride than iron oxide. It is suggested that the loss of rheological/mechanical structure was due to chain depolymerization, facilitated by the redox properties of tetracycline hydrochloride and iron oxide. These observations have direct implications for the design and formulation of gels containing an active pharmaceutical ingredient. (c) 2005 Wiley Periodicals, Inc.
Resumo:
The effects of three non-antibiotic, antimicrobial agents (taurolidine, chlorhexidine acetate and providone-iodine) on the surface hydrophobicity of the clinical strains Escherichia coli, Staphylococcus saprophyticus, Staphylococcus epidermidis and Candida albicans were examined. Three recognized techniques for hydrophobicity measurements, Bacterial Adherence to Hydrocarbons (BATH), the Salt Aggregation Test (SAT) and Hydrophobic Interaction Chromatography (HIC) were compared. At concentrations reported to interfere with microbial-epithelial cell adherence, all three agents altered the cell surface hydrophobicity. However, these effects failed to exhibit a uniform relationship. Generally, taurolidine and povidone-iodine treatments decreased the hydrophobicity of the strains examined whereas chlorhexidine acetate effects depended upon the micro-organism treated. Subsequently, the exact contribution of altered cell surface hydrophobicity to the reported microbial anti-adherence effects is unclear. Comparison of the three techniques revealed a better correlation between the results obtained with the BATH test and HIC than the results obtained with the BATH and SAT or SAT and HIC. However, these differences may be due to the inaccuracy associated with the visual assessment of results employed by the SAT.
Resumo:
Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitisers with ionising radiation in vitro and in vivo at kilovoltage and megavoltage energies is discussed.
Resumo:
In this paper, we report the synthesis and biological activity of a series of dihydroisocoumarin analogues Conjugated with fatty acids, alcohols, or amines, of varying hydrocarbon chain length and degree of unsaturation, to (he dihydroisocoumarins, kigelin and mellein, at the C-7 and C-8 positions on the core dihydroisocoumarin structure. These compounds were evaluated for their antiproliferative activity against human breast cancer (MCF-7 and MDA-MB-468) and melanoma cells (SK-MEL-28 and Malme-3M) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Two compounds Conjugated with gamma-linolenyl alcohol (18:3 n-6) demonstrated potent antiproliferative activity in vitro with one of these 4-hydroxy-3-oxo-1.3-dihydro-isobenzofuran-5-carboxylic acid octadeca-6,9,12-trienyl ester, demonstrating significant antitumor activity in vivo ill a number of human tumor xenograft models.
Resumo:
The biennial meeting on 'Exploiting Bacteriophages for Bioscience, Biotechnology and Medicine', held in London, UK, on 20 January 2012, and chaired by George Salmond (University of Cambridge, UK) hosted over 50 participants representing 13 countries. The highly multidisciplinary meeting covered a diverse range of topics, reflecting the current expansion of interest in this field, including the use of bacteriophages as the source of biochemical reagents for molecular biology, bacteriophages for the treatment of human and animal diseases, bacteriophage-based diagnostics and therapeutic delivery technologies and necessity for, and regulatory challenges associated with, robust clinical trials of phage-based therapeutics. This report focuses on a number of presentations from the meeting relating to cutting-edge research on bacteriophages as anti-infective agents.
Resumo:
Relying on Brown’s (2005a, b) thesis that contemporary shifts in penal policy are best understood as a reprisal of colonial rationality, so that offenders become ‘non-citizens’ or ‘agents of obligation’, this article argues that this framework finds support in developments in Irish criminal justice policy. Recent legislation aimed at offenders suspected of involvement in ‘organised crime’ is examined through this lens. These offenders have found themselves reconstituted as ‘agents of obligation’ with duties to furnish information about their property and movements, report to the police concerning their location and, importantly, refrain from criminal activity or face extraordinary sanctions. It is therefore argued that this paradigm is a useful heuristic device through which to understand recent developments in Irish criminal justice and elsewhere. In light of the trends observed in Ireland, certain refinements and extensions to Brown’s argument are put forward for consideration.
Resumo:
The IQ-motif is an amphipathic, often positively charged, a-helical, calmodulin binding sequence found in a number of eukaryote signalling, transport and cytoskeletal proteins. They share common biophysical characteristics with established, cationic a-helical antimicrobial peptides, such as the human cathelicidin LL-37. Therefore, we tested eight peptides encoding the sequences of IQ-motifs derived from the human cytoskeletal scaffolding proteins IQGAP2 and IQGAP3. Some of these peptides were able to inhibit the growth of Escherichia coli and Staphylococcus aureus with minimal inhibitory concentrations (MIC) comparable to LL-37. In addition some IQ-motifs had activity against the fungus Candida albicans. This antimicrobial activity is combined with low haemolytic activity (comparable to, or lower than, that of LL-37). Those IQ-motifs with anti-microbial activity tended to be able to bind to lipopolysaccharide. Some of these were also able to permeabilise the cell membranes of both Gram positive and Gram negative bacteria. These results demonstrate that IQ-motifs are viable lead sequences for the identification and optimisation of novel anti-microbial peptides. Thus, further investigation of the anti-microbial properties of this diverse group of sequences is merited.
Resumo:
Vascular diseases, including atherosclerosis, angioplasty-induced restenosis, vessel graft arteriosclerosis and hypertension-related stenosis, remain the most prevalent cause of death in the developed world. The aetiology of vascular diseases is multifactorial with both genetic and environmental factors. Recently, some of the most promising research identifies the epigenetic modification of the genome to play a major role in the disease development, linking the environmental insults with gene regulation. In this process, modification of DNA by methylation, and histone modification by acetylation, methylation, phosphorylation and/or SUMOylation are reported. Importantly, recent studies demonstrated that histone deacetylase (HDAC) enzymes are crucial in endothelial integrity, smooth muscle proliferation and in the formation of arteriosclerosis in animal models. The study of HDACs has shown remarkable specificity of HDAC family members in vascular cell growth/death that influences the disease process. Interestingly, the effects of HDACs on arteriosclerosis development in animal models have been observed after HDAC inhibition using specific inhibitors. This provides a new approach for the treatment of vascular disease using the agents that influence the epigenetic process in vascular cells. This review updates the rapid advances in epigenetics of vascular diseases focusing on the role of HDAC family in atherosclerosis. It will also discuss the underlying mechanisms of histone acetylation in vascular cells and highlight the therapeutic potential of such agents.
Resumo:
The hydrophobic probe N-phenyl-1-naphthylamine accumulated less in non-pathogenic Yersinia spp. and non-pathogenic and pathogenic Yersinia enterocolitica than in Yersinia pseudotuberculosis or Yersinia pestis. This was largely due to differences in the activity of efflux systems, but also to differences in outer membrane permeability because uptake of the probe in KCN/arsenate-poisoned cells was slower in the former group than in Y. pseudotuberculosis and Y. pestis. The probe accumulation rate was higher in Y. pseudotuberculosis and Y. pestis grown at 37 degrees C than at 26 degrees C and was always highest in Y. pestis. These yersiniae had LPSs with shorter polysaccharides than Y. enterocolitica, particularly when grown at 37 degrees C. Gelliquid-crystalline phase transitions (Tc 28-31 degrees C) were observed in LPS aggregates of Y. enterocolitica grown at 26 and 37 degrees C, with no differences between non-pathogenic and pathogenic strains. Y. pseudotuberculosis and Y. pestis LPSs showed no phase transitions and, although the fluidity of LPSs of Y. pseudotuberculosis and Y. enterocolitica grown at 26 degrees C were close below the Tc of the latter, they were always in a more fluid state than Y. enterocolitica LPS. Comparison with previous studies of Salmonella choleraesuis subsp. choleraesuis serotype minnesota rough LPS showed that the increased fluidity and absence of transition of Y. pseudotuberculosis and Y. pestis LPSs cannot be explained by their shorter polysaccharides and suggested differences at the lipid A/core level. It is proposed that differences in LPS-LPS interactions and efflux activity explain the above observations and reflect the adaptation of Yersinia spp. to different habitats.