135 resultados para Aflatoxin albumin adduct
Resumo:
The outer membrane protein (OMP) profiles of four different strains of Bacteroides fragilis, as determined by Coomassie blue stained polyacrylamide gels, were compared after growth in broth culture and in the mouse peritoneal cavity. There was no induction of the expression of large quantities of novel OMP after growth in vivo. Mouse immunoglobulin G and albumin were associated with the bacterial OMP, but could be removed by washing.
Resumo:
Humic acid and protein are two major organic matter types encountered in natural and polluted environment, respectively. This study employed Triple Pulse Experiments (TPEs) to investigate and compare the influence of Suwannee River Humic Acid (SRHA) (model humic acid) and Bovine Serum Albumin (BSA) (model protein) on colloid deposition in a column packed with saturated iron oxide-coated quartz sand. Study results suggest that adsorbed SRHA may inhibit colloid deposition by occupying colloid sites on the porous medium. Conversely, BSA may promote colloid deposition by a 'filter ripening' mechanism. This study provides insight to understand the complex behavior of colloids in organic matter-presented aquifers and sand filters. © (2012) Trans Tech Publications, Switzerland.
Resumo:
OBJECTIVE: To test whether simvastatin improves physiological and biological outcomes in patients undergoing esophagectomy.
BACKGROUND: One-lung ventilation during esophagectomy is associated with inflammation, alveolar epithelial and systemic endothelial injury, and the development of acute lung injury (ALI). Statins that modify many of the underlying processes are a potential therapy to prevent ALI.
METHODS: We conducted a randomized double-blind placebo-controlled trial in patients undergoing esophagectomy. Patients received simvastatin 80 mg or placebo enterally for 4 days preoperatively and 7 days postoperatively. The primary end point was pulmonary dead space (Vd/Vt) at 6 hours after esophagectomy or before extubation. Inflammation was assessed by plasma cytokines and intraoperative exhaled breath condensate pH; alveolar type 1 epithelial injury was assessed by plasma receptor for advanced glycation end products and systemic endothelial injury by the urine albumin-creatinine ratio.
RESULTS: Thirty-nine patients were randomized; 8 patients did not undergo surgery and were excluded. Fifteen patients received simvastatin and 16 received placebo. There was no difference in Vd/Vt or other physiological outcomes. Simvastatin resulted in a significant decrease in plasma MCP-1 on day 3 and reduced exhaled breath condensate acidification. Plasma receptor for advanced glycation end products was significantly lower in the simvastatin-treated group, as was the urine albumin-creatinine ratio on day 7 postsurgery. ALI developed in 4 patients in the placebo group and no patients in the simvastatin group although this difference was not statistically significant (P = 0.1).
CONCLUSIONS: In this proof of concept study, pretreatment with simvastatin in esophagectomy decreased biomarkers of inflammation as well as pulmonary epithelial and systemic endothelial injury.
Resumo:
Type 1 diabetes (T1D) increases risk of the development of microvascular complications and cardiovascular disease (CVD). Dyslipidemia is a common risk factor in the pathogenesis of both CVD and diabetic nephropathy (DN), with CVD identified as the primary cause of death in patients with DN. In light of this commonality, we assessed single nucleotide polymorphisms (SNPs) in thirty-seven key genetic loci previously associated with dyslipidemia in a T1D cohort using a casecontrol design. SNPs (n = 53) were genotyped using Sequenom in 1467 individuals with T1D (718 cases with proteinuric nephropathy and 749 controls without nephropathy i.e. normal albumin excretion). Cases and controls were white and recruited from the UK and Ireland. Association analyses were performed using PLINK to compare allele frequencies in cases and controls. In a sensitivity analysis, samples from control individuals with reduced renal function (estimated glomerular filtration rate,60 ml/min/1.73 m2) were excluded. Correction for multiple testing was performed by permutation testing. A total of 1394 samples passed quality control filters. Following regression analysis adjusted by collection center, gender, duration of diabetes, and average HbA1c, two SNPs were significantly associated with DN. rs4420638 in the APOC1 region (odds ratio [OR] = 1.51; confidence intervals [CI]: 1.19–1.91; P = 0.001) and rs1532624 in CETP (OR = 0.82; CI: 0.69–0.99; P = 0.034); rs4420638 was also significantly associated in a sensitivity analysis (P = 0.016) together with rs7679 (P = 0.027). However, no association was significant following correction for multiple testing. Subgroup analysis of end-stage renal disease status failed to reveal any association. Our results suggest common variants associated with dyslipidemia are not strongly associated with DN in T1D among white individuals. Our findings, cannot entirely exclude these key genes which are central to the process of dyslipidemia, from involvement in DN pathogenesis as our study had limited power to detect variants of small effect size. Analysis in larger independent cohorts is required.
Resumo:
Heterogeneous catalytic oxidation of a series of thioethers (2-thiomethylpyrimidine, 2-thiomethyl-4,6-dimethyl-pyrimidine, 2-thiobenzylpyrimidine, 2-thiobenzyl-4,6-dimethylpyrimidine, thioanisole, and n-heptyl methyl sulfide) was performed in ionic liquids by using MCM-41 and UVM-type mesoporous catalysts containing Ti, or Ti and Ge. A range of triflate, tetrafluoroborate, trifluoroacetate, lactate and bis(trifluoromethanesulfonyl)imide-based ionic liquids were used. The oxidations were carried out by using anhydrous hydrogen peroxide or the urea-hydrogen peroxide adduct and showed that ionic liquids are very effective solvents, achieving greater reactivity and selectivity than reactions performed in dioxane. The effects of halide and acid impurities on the reactions were also investigated. Recycling experiments on catalysts were carried out in order to evaluate Ti leaching and its effect on activity and selectivity.
Resumo:
OBJECTIVESTo determine whether skin-intrinsic fluorescence (SIF) is associated with long-term complications of type 1 diabetes (T1D) and, if so, whether it is independent of chronic glycemic exposure and previous intensive therapy.RESEARCH DESIGN AND METHODSWe studied 1,185 (92%) of 1,289 active Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) participants from 2010 to 2011. SIF was determined using a fluorescence spectrometer and related cross-sectionally to recently determined measures of retinopathy (stereo fundus photography), cardiac autonomic neuropathy (CAN; R-R interval), confirmed clinical neuropathy, nephropathy (albumin excretion rate [AER]), and coronary artery calcification (CAC).RESULTSOverall, moderately strong associations were seen with all complications, before adjustment for mean HbA1c over time, which rendered these associations nonsignificant with the exception of sustained AER >30 mg/24 h and CAC, which were largely unaffected by adjustment. However, when examined within the former DCCT treatment group, associations were generally weaker in the intensive group and nonsignificant after adjustment, while in the conventional group, associations remained significant for CAN, sustained AER >30 mg/24 h, and CAC even after mean HbA1c adjustment.CONCLUSIONSSIF is associated with T1D complications in DCCT\EDIC. Much of this association appears to be related to historical glycemic exposure, particularly in the previously intensively treated participants, in whom adjustment for HbA1c eliminates statistical significance.
Resumo:
S-(2-Succinyl)cysteine (2SC) has been identified as a chemical modification in plasma proteins, in the non-mercaptalbumin fraction of human plasma albumin, in human skin collagen, and in rat skeletal muscle proteins and urine. 2SC increases in human skin collagen with age and is increased in muscle protein of diabetic vs. control rats. The concentration of 2SC in skin collagen and muscle protein correlated strongly with that of the advanced glycation/lipoxidation end-product (AGE/ALE), N(epsilon)-(carboxymethyl)lysine (CML). 2SC is formed by a Michael addition reaction of cysteine sulfhydryl groups with fumarate at physiological pH. Fumarate, but not succinate, inactivates the sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase in vitro, in concert with formation of 2SC. 2SC is the first example of spontaneous chemical modification of protein by a metabolic intermediate in the Krebs cycle. These observations identify fumarate as an endogenous electrophile and suggest a role for fumarate in regulation of metabolism.
Resumo:
We investigated the associations of apolipoprotein C-III (apoCIII) protein and apoCIII gene variation with microvascular disease complications in Type 1 diabetes.
Resumo:
Oxidative stress is implicated in the pathogenesis of numerous disease processes including diabetes mellitus, atherosclerosis, ischaemia reperfusion injury and rheumatoid arthritis. Chemical modification of amino acids in protein during lipid peroxidation results in the formation of lipoxidation products which may serve as indicators of oxidative stress in vivo. The focus of the studies described here was initially to identify chemical modifications of protein derived exclusively from lipids in order to assess the role of lipid peroxidative damage in the pathogenesis of disease. Malondialdehye (MDA) and 4-hydroxynonenal (HNE) are well characterized oxidation products of polyunsaturated fatty acids on low-density lipoprotein (LDL) and adducts of these compounds have been detected by immunological means in atherosclerotic plaque. Thus, we first developed gas chromatography-mass spectrometry assays for the Schiff base adduct of MDA to lysine, the lysine-MDA-lysine diimine cross-link and the Michael addition product of HNE to lysine. Using these assays, we showed that the concentrations of all three compounds increased significantly in LDL during metal-catalysed oxidation in vitro. The concentration of the advanced glycation end-product N epsilon-(carboxymethyl)lysine (CML) also increased during LDL oxidation, while that of its putative carbohydrate precursor the Amadori compound N epsilon-(1-deoxyfructose-1-yl)lysine did not change, demonstrating that CML is a marker of both glycoxidation and lipoxidation reactions. These results suggest that MDA and HNE adducts to lysine residues should serve as biomarkers of lipid modification resulting from lipid peroxidation reactions, while CML may serve as a biomarker of general oxidative stress resulting from both carbohydrate and lipid oxidation reactions.
Resumo:
To investigate the role of modified low-density lipoproteins (LDL) in the pathogenesis of diabetic retinopathy, we studied the cytotoxicity of normal and mildly modified human LDL to bovine retinal capillary endothelial cells and pericytes in vitro. Pooled LDL was incubated (in phosphate-buffered saline-EDTA, 3 days, 37 degrees C) under 1) nitrogen with additional chelating agents and 2) air, to prepare normal and minimally oxidized LDL, respectively. Similar conditions, but with the addition of 50 mM D-glucose, were used to prepare glycated and glycoxidized LDL. None of the LDL preparations was recognized by the macrophage scavenger receptor, confirming limited modification. Retinal capillary endothelial cells and pericytes were grown to confluence and then exposed for 2 or 3 days to serum-free medium (1% albumin) supplemented with normal or modified LDL (100 mg/l) or to serum-free medium alone. Cytotoxicity was assessed by cell counting (live and total cells) and by cell protein determination. Compared with normal LDL, modified LDL were cytotoxic to both cell types at both time points, causing highly significant decreases in live and total cell counts (P <0.001) (analysis of variance). Reductions in cell protein also were significant for pericytes at day 3 (P = 0.016) and of borderline significance for endothelial cells at day 2 (P = 0.05) and day 3 (P = 0.063). Cytotoxicity increased as follows: normal <glycated <or = minimally oxidized <glycoxidized LDL. We conclude that, in diabetes, mild modification of LDL resulting from separate or combined processes of glycation and oxidation may contribute to chronic retinal capillary injury and thus to the development of diabetic retinopathy.
Resumo:
The Maillard or browning reaction between sugar and protein contributes to the increased chemical modification and cross-linking of long-lived tissue proteins in diabetes. To evaluate the role of glycation and oxidation in these reactions, we have studied the effects of oxidative and antioxidative conditions and various types of inhibitors on the reaction of glucose with rat tail tendon collagen in phosphate buffer at physiological pH and temperature. The chemical modifications of collagen that were measured included fructoselysine, the glycoxidation products N epsilon-(carboxymethyl)lysine and pentosidine and fluorescence. Collagen cross-linking was evaluated by analysis of cyanogen bromide peptides using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by changes in collagen solubilization on treatment with pepsin or sodium dodecylsulfate. Although glycation was unaffected, formation of glycoxidation products and cross-linking of collagen were inhibited by antioxidative conditions. The kinetics of formation of glycoxidation products proceeded with a short lag phase and were independent of the amount of Amadori adduct on the protein, suggesting that autoxidative degradation of glucose was a major contributor to glycoxidation and cross-linking reactions. Chelators, sulfhydryl compounds, antioxidants, and aminoguanidine also inhibited formation of glycoxidation products, generation of fluorescence, and cross-linking of collagen without significant effect on the extent of glycation of the protein. We conclude that autoxidation of glucose or Amadori compounds on protein plays a major role in the formation of glycoxidation products and cross-liking of collagen by glucose in vitro and that chelators, sulfhydryl compounds, antioxidants, and aminoguanidine act as uncouplers of glycation from subsequent glycoxidation and cross-linking reactions.
Resumo:
N epsilon-(Carboxymethyl)lysine (CML) is formed on oxidative cleavage of carbohydrate adducts to lysine residues in glycated proteins in vitro [Ahmed et al. (1988) J. Biol. Chem. 263, 8816-8821; Dunn et al. (1990) Biochemistry 29, 10964-10970]. We have shown that, in human lens proteins in vivo, the concentration of fructose-lysine (FL), the Amadori adduct of glucose to lysine, is constant with age, while the concentration of the oxidation product, CML, increases significantly with age [Dunn et al. (1989) Biochemistry 28, 9464-9468]. In this work we extend our studies to the analysis of human skin collagen. The extent of glycation of insoluble skin collagen was greater than that of lens proteins (4-6 mmol of FL/mol of lysine in collagen versus 1-2 mmol of FL/mol of lysine in lens proteins), consistent with the lower concentration of glucose in lens, compared to plasma. In contrast to lens, there was a slight but significant age-dependent increase in glycation of skin collagen, 33% between ages 20 and 80. As in lens protein, CML, present at only trace levels in neonatal collagen, increased significantly with age, although the amount of CML in collagen at 80 years of age, approximately 1.5 mmol of CML/mol of lysine, was less than that found in lens protein, approximately 7 mmol of CML/mol of lysine. The concentration of N epsilon-(carboxymethyl)hydroxylysine (CMhL), the product of oxidation of glycated hydroxylysine, also increased with age in collagen, in parallel with the increase in CML, from trace levels at infancy to approximately 5 mmol of CMhL/mol of hydroxylysine at age 80.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Carboxymethyllysine (CML) has been identified as a modified amino acid that accumulates with age in human lens proteins and collagen. CML may be formed by oxidation of fructoselysine (FL), the Amadori adduct formed on nonenzymatic glycosylation of lysine residues in protein, or by reaction of ascorbate with protein under autoxidizing conditions. We proposed that measurements of tissue and urinary CML may be useful as indices of oxidative stress or damage to proteins in vivo. To determine the extent to which oxidation of nonenzymatically glycosylated proteins contributes to urinary CML, we measured the urinary concentrations of FL and CML in diabetic (n = 26) and control (n = 28) patients. The urinary concentration of FL correlated strongly with HbA1 measurements and was significantly higher in diabetic compared with control samples (9.2 +/- 6.5 and 4.0 +/- 2.8 micrograms/mg creatinine, respectively; P less than 0.0001). There was also a strong correlation between the concentrations of CML and FL in both diabetic and control urine (r = 0.67, P less than 0.0001) but only a weakly significant increase in the CML concentration in diabetic compared with control urine (1.2 +/- 0.5 and 1.0 +/- 0.3 micrograms/mg creatinine, respectively; P = 0.05). The molar ratio of CML to FL was significantly lower in diabetic compared with control patients (0.25 +/- 0.12 and 0.43 +/- 0.16, respectively; P less than 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The Maillard or browning reaction between reducing sugars and protein contributes to the chemical deterioration and loss of nutritional value of proteins during food processing and storage. This article presents and discusses evidence that the Maillard reaction is also involved in the chemical aging of long-lived proteins in human tissues. While the concentration of the Amadori adduct of glucose to lens protein and skin collagen is relatively constant with age, products of sequential glycation and oxidation of protein, termed glycoxidation products, accumulate in these long-lived proteins with advancing age and at an accelerated rate in diabetes. Among these products are the chemically modified amino acids, N epsilon-(carboxymethyl)lysine (CML), N epsilon-(carboxymethyl)hydroxylysine (CMhL), and the fluorescent crosslink, pentosidine. While these glycoxidation products are present at only trace levels in tissue proteins, there is strong evidence for the presence of other browning products which remain to be characterized. Mechanisms for detoxifying reactive intermediates in the Maillard reaction and catabolism of extensively browned proteins are also discussed, along with recent approaches for therapeutic modulation of advanced stages of the Maillard reaction.
Resumo:
Myocarditis, often initiated by viral infection, may progress to autoimmune inflammatory heart disease, dilated cardiomyopathy and heart failure. Although cardiac myosin is a dominant autoantigen in animal models of myocarditis and is released from the heart during viral myocarditis, the characterization, role and significance of anti-cardiac myosin autoantibodies is poorly defined. In our study, we define the human cardiac myosin epitopes in human myocarditis and cardiomyopathies and establish a mechanism to explain how anti-cardiac myosin autoantibodies may contribute to heart disease. We show that autoantibodies to cardiac myosin in sera from myocarditis and dilated cardiomyopathies in humans targeted primarily epitopes in the S2 hinge region of cardiac myosin. In addition, anti-cardiac myosin antibodies in sera or purified IgG from myocarditis and cardiomyopathy targeted the beta-adrenergic receptor and induced antibody-mediated cAMP-dependent protein kinase A (PKA) cell signaling activity in heart cells. Antibody-mediated PKA activity in sera was abrogated by absorption with anti-human IgG. Antibody-mediated cell signaling of PKA was blocked by antigen-specific inhibition by human cardiac myosin or the beta-adrenergic receptor but not the alpha adrenergic receptor or bovine serum albumin. Propranolol, a beta blocker and inhibitor of the beta-adrenergic receptor pathway also blocked the antibody-mediated signaling of the beta-adrenergic receptor and PKA. The data suggest that IgG antibody against human cardiac myosin reacts with the beta-adrenergic receptor and triggers PKA signaling in heart cells. In summary, we have identified a new class of crossreactive autoantibodies against human cardiac myosin and the beta-adrenergic receptor in the heart. In addition, we have defined disease specific peptide epitopes in the human cardiac myosin rod S2 region in human myocarditis and cardiomyopathy as well as a mechanistic role of autoantibody in the pathogenesis of disease.