123 resultados para Adsorption isotherms
Resumo:
The transport properties (adsorption and aggregation behavior) of virus-like particles (VLPs) of two strains of norovirus ("Norwalk" GI.1 and "Houston" GII.4) were studied in a variety of solution chemistries. GI.1 and GII.4 VLPs were found to be stable against aggregation at pH 4.0-8.0. At pH 9.0, GI.1 VLPs rapidly disintegrated. The attachment efficiencies (a) of GI.1 and GII.4 VLPs to silica increased with increasing ionic strength in NaCl solutions at pH 8.0. The attachment efficiency of GI.1 VLPs decreased as pH was increased above the isoelectric point (pH 5.0), whereas at and below the isoelectric point, the attachment efficiency was erratic. Ca(2+) and Mg(2+) dramatically increased the attachment efficiencies of GI.1 and GII.4 VLPs, which may be due to specific interactions with the VLP capsids. Bicarbonate decreased attachment efficiencies for both GI.1 and GII.4 VLPs, whereas phosphate decreased the attachment efficiency of GI.1, while increasing GII.4 attachment efficiency. The observed differences in GI.1 and GII.4 VLP attachment efficiencies in response to solution chemistry may be attributed to differential responses of the unique arrangement of exposed amino acid residues on the capsid surface of each VLP strain.
Resumo:
Stoichiometrically equivalent concentrations of ethylenediaminetetraacetate, EDTA, and of related chelating anions increase the adsorption of ca. millimolar concentrations heavy metal aqua-ions on amorphous precipitates of aluminium(III) or iron(III) hydroxide and, although higher concentrations decrease the adsorption, poly-EDTA, a polyelectrolyte containing EDTA functional groups, shows no such decrease.
Resumo:
The adsorption and electrooxidation of CO at a Ru(0001) electrode in perchloric acid solution have been investigated as a function of temperature, potential and time using in situ FTIR spectroscopy. This builds upon and extends previous work on the same system carried out at room temperature. As was observed at room temperature, both linear (CO) and 3-fold-hollow (CO) binding CO adsorbates (bands at 2000-2045 cm and 1768-1805 cm, respectively) were detected on the Ru(0001) electrode at 10°C and 50°C. However, the temperature of the Ru(0001) electrode had a significant effect upon the structure and behavior of the CO adlayer. At 10°C, the in-situ FTIR data showed that the adsorbed CO species still remain in rather compact islands up to ca. 1100 mV vs Ag/AgCl as the CO oxidation reaction proceeds, with oxidation occurring only at the boundaries between the CO and active surface oxide/hydroxide domains. However, the IR data collected at 50°C strongly suggest that the adsorbed CO species are present as relatively looser and weaker structures, which are more easily electro-oxidized. The temperature-, potential-, and coverage-dependent relaxation and compression of the CO adlayer at low coverages are also discussed.
Resumo:
Microwave heating reduces the preparation time and improves the adsorption quality of activated carbon. In this study, activated carbon was prepared by impregnation of palm kernel fiber with phosphoric acid followed by microwave activation. Three different types of activated carbon were prepared, having high surface areas of 872 m2 g-1, 1256 m2 g-1, and 952 m2 g-1 and pore volumes of 0.598 cc g-1, 1.010 cc g-1, and 0.778 cc g-1, respectively. The combined effects of the different process parameters, such as the initial adsorbate concentration, pH, and temperature, on adsorption efficiency were explored with the help of Box-Behnken design for response surface methodology (RSM). The adsorption rate could be expressed by a polynomial equation as the function of the independent variables. The hexavalent chromium adsorption rate was found to be 19.1 mg g-1 at the optimized conditions of the process parameters, i.e., initial concentration of 60 mg L-1, pH of 3, and operating temperature of 50 oC. Adsorption of Cr(VI) by the prepared activated carbon was spontaneous and followed second-order kinetics. The adsorption mechanism can be described by the Freundlich Isotherm model. The prepared activated carbon has demonstrated comparable performance to other available activated carbons for the adsorption of Cr(VI).
Resumo:
The fundamental understanding of the activity in heterogeneous catalysis has long been the major subject in chemistry. This paper shows the development of a two-step model to understand this activity. Using the theory of chemical potential kinetics with Bronsted-Evans-Polanyi relations, the general adsorption energy window is determined from volcano curves, using which the best catalysts can be searched. Significant insights into the reasons for catalytic activity are obtained.
Resumo:
Biosorption of Cr(VI) onto date pit biomass has been investigated via kinetic studies as functions of initial Cr(VI) concentration, solution temperature and date pit particle size. Kinetic experiments indicated that chromate ions accumulate onto the date pits and then reduce to less toxic Cr(III) compounds. The López-García, Escudero and Park Cr(VI) biosorption kinetic models, which take into consideration the direct reduction, the passivation process and the follow-on decrease of the active surface area of reaction, were applied to the kinetic data. The models represented the experimental data accurately at low Cr(VI) concentration (0.480 mM) and small particle size (0.11–0.22 mm) at which the Cr(VI) was completely removed from the aqueous solution and completely reduced to Cr(III) after 420 min. Date pit biomass thus offers a green chemical process for the remediation of chromium from wastewater. This investigation will help researchers employ the adsorption-coupled reduction of Cr(VI) models and simplify their application to kinetic experimental data.
Resumo:
This work presents the possibility of optimising 3D Organised Mesoporous Silica (OMS) coated with both iron and aluminium oxides for the optimal removal of As(III) and As(V) from synthetic contaminated water. The materials developed were fully characterised and were tested for removing arsenic in batch experiments. The effect of total Al to Fe oxides coating on the selective removal of As(III) and As(V) was studied. It was shown that 8% metal coating was the optimal configuration for the coated OMS materials in removing arsenic. The effect of arsenic initial concentration and pH, kinetics and diffusion mechanisms was studied, modelled and discussed. It was shown that the advantage of an organised material over an un-structured sorbent was very limited in terms of kinetic and diffusion under the experimental conditions. It was shown that physisorption was the main adsorption process involved in As removal by the coated OMS. Maximum adsorption capacity of 55 mg As(V).g-1 was noticed at pH 5 for material coated with 8% Al oxides while 35 mg As(V).g-1 was removed at pH 4 for equivalent material coated with Fe oxides.
Resumo:
The present research investigates the uptake of phosphate ions from aqueous solutions using acidified laterite (ALS), a by-product from the production of ferric aluminium sulfate using laterite. Phosphate adsorption experiments were performed in batch systems to determine the amount of phosphate adsorbed as a function of solution pH, adsorbent dosage and thermodynamic parameters per fixed P concentration. Kinetic studies were also carried out to study the effect of adsorbent particle sizes. The maximum removal capacity of ALS observed at pH 5 was 3.68 mg P g-1. It was found that as the adsorbent dosage increases, the equilibrium pH decreases, so an adsorbent dosage of 1.0 g L-1 of ALS was selected. Adsorption capacity (qm) calculated from the Langmuir isotherm was found to be 2.73 mg g-1. Kinetic experimental data were mathematically well described using the pseudo first-order model over the full range of the adsorbent particle size. The adsorption reactions were endothermic, and the process of adsorption was favoured at high temperature; the ΔG and ΔH values implied that the main adsorption mechanism of P onto ALS is physisorption. The desorption studies indicated the need to consider a NaOH 0.1M solution as an optimal solution for practical regeneration applications.
Resumo:
Abstract Image
A new experimental procedure based on attenuated total reflection infrared spectroscopy has been developed to investigate surface species under liquid phase reaction conditions. The technique has been tested by investigating the enhanced selectivity in the hydrogenation of α,β-unsaturated aldehyde citral over a 5% Pt/SiO2 catalyst toward unsaturated alcohols geraniol/nerol, which occurs when citronellal is added to the reaction. The change in selectivity is proposed to be the result of a change in the citral adsorption mode in the presence of citronellal. Short time on stream attenuated total internal reflection infrared spectroscopy has allowed identification of the adsorption modes of citral. With no citronellal, citral adsorbs through both the C═C and C═O groups; however, in the presence of citronellal, citral adsorption occurs through the C═O group only, which is proposed to be the cause of the altered reaction selectivity.