106 resultados para Acute respiratory tract disease
Resumo:
Despite its high incidence and devastating outcomes, acute respiratory distress syndrome (ARDS) has no specific treatment, with effective therapy currently limited to minimizing potentially harmful ventilation and avoiding a positive fluid balance. Many pharmacological therapies have been investigated with limited success to date. In this review article we provide a state-of-the-art update on recent and ongoing trials, as well as reviewing promising future pharmacological therapies in ARDS.
Resumo:
Aims
Our aim was to test the prediction and clinical applicability of high-sensitivity assayed troponin I for incident cardiovascular events in a general middle-aged European population.
Methods and results
High-sensitivity assayed troponin I was measured in the Scottish Heart Health Extended Cohort (n = 15 340) with 2171 cardiovascular events (including acute coronary heart disease and probable ischaemic strokes), 714 coronary deaths (25% of all deaths), 1980 myocardial infarctions, and 797 strokes of all kinds during an average of 20 years follow-up. Detection rate above the limit of detection (LoD) was 74.8% in the overall population and 82.6% in men and 67.0% in women. Troponin I assayed by the high-sensitivity method was associated with future cardiovascular risk after full adjustment such as that individuals in the fourth category had 2.5 times the risk compared with those without detectable troponin I (P < 0.0001). These associations remained significant even for those individuals in whom levels of contemporary-sensitivity troponin I measures were not detectable. Addition of troponin I levels to clinical variables led to significant increases in risk prediction with significant improvement of the c-statistic (P < 0.0001) and net reclassification (P < 0.0001). A threshold of 4.7 pg/mL in women and 7.0 pg/mL in men is suggested to detect individuals at high risk for future cardiovascular events.
Conclusion
Troponin I, measured with a high-sensitivity assay, is an independent predictor of cardiovascular events and might support selection of at risk individuals.
Resumo:
Rationale: Increasing epithelial repair and regeneration may hasten resolution of lung injury in patients with the Acute Respiratory Distress Syndrome (ARDS). In animal models of ARDS, Keratinocyte Growth Factor (KGF) reduces injury and increases epithelial proliferation and repair. The effect of KGF in the human alveolus is unknown.
Objectives: To test whether KGF can attenuate alveolar injury in a human model of ARDS.
Methods: Volunteers were randomized to intravenous KGF (60 μg/kg) or placebo for 3 days, before inhaling 50μg lipopolysaccharide. Six hours later, subjects underwent bronchoalveolar lavage (BAL) to quantify markers of alveolar inflammation and cell-specific injury.
Measurements and Main Results: KGF did not alter leukocyte infiltration or markers of permeability in response to LPS. KGF increased BAL concentrations of Surfactant Protein D (SP-D), MMP-9, IL-1Ra, GM-CSF and CRP. In vitro, BAL fluid from KGF-treated subjects (KGF BAL) inhibited pulmonary fibroblast proliferation, but increased alveolar epithelial proliferation. Active MMP-9 increased alveolar epithelial wound repair. Finally, BAL from the KGF pre-treated group enhanced macrophage phagocytic uptake of apoptotic epithelial cells and bacteria compared with BAL from the placebo-treated group. This effect was blocked by inhibiting activation of the GM-CSF receptor.
Conclusions: KGF treatment increases BAL SP-D, a marker of type II alveolar epithelial cell proliferation in a human model of ALI. Additionally KGF increases alveolar concentrations of the anti-inflammatory cytokine IL-1Ra, and mediators that drive epithelial repair (MMP-9) and enhance macrophage clearance of dead cells and bacteria (GM-CSF).
Resumo:
Strains of many infectious agents differ in fundamental epidemiological parameters including transmissibility, virulence and pathology. We investigated whether genotypes of Mycobacterium bovis (the causative agent of bovine tuberculosis, bTB) differ significantly in transmissibility and virulence, combining data from a nine-year survey of the genetic structure of the M. bovis population in Northern Ireland with detailed records of the cattle population during the same period. We used the size of herd breakdowns as a proxy measure of transmissibility and the proportion of skin test positive animals (reactors) that were visibly lesioned as a measure of virulence. Average breakdown size increased with herd size and varied depending on the manner of detection (routine herd testing or tracing of infectious contacts) but we found no significant variation among M. bovis genotypes in breakdown size once these factors had been accounted for. However breakdowns due to some genotypes had a greater proportion of lesioned reactors than others, indicating that there may be variation in virulence among genotypes. These findings indicate that the current bTB control programme may be detecting infected herds sufficiently quickly so that differences in virulence are not manifested in terms of outbreak sizes. We also investigated whether pathology of infected cattle varied according to M. bovis genotype, analysing the distribution of lesions recorded at post mortem inspection. We concentrated on the proportion of cases lesioned in the lower respiratory tract, which can indicate the relative importance of the respiratory and alimentary routes of infection. The distribution of lesions varied among genotypes and with cattle age and there were also subtle differences among breeds. Age and breed differences may be related to differences in susceptibility and husbandry, but reasons for variation in lesion distribution among genotypes require further investigation. © 2013 Wright et al.
Resumo:
In this study, a combination of recA-based PCR assays and 16S rDNA restriction fragment length polymorphism (RFLP) analysis was used to determine the genomovar diversity of clinical Burkholderia cepacia complex isolates. Twenty-eight isolates were prospectively collected from patients attending a large Australian adult cystic fibrosis (CF) unit, 22 isolates were referred from other Australian CF units and a further eight isolates originated from patients without CF. The 28 prospectively collected isolates were distributed amongst the following genomovars: Burkholderia cepacia genomovar I (28.6%), Burkholderia multivorans (21.4%), Burkholderia cepacia genomovar III (39.3%), Burkholderia vietnamiensis(3.6%) and Burkholderia ambifaria (7.1%). The results of this study highlight the usefulness of 16S rDNA RFLP typing for the identification of other Burkholderia spp. and non-fermenting gram-negative bacteria.
Resumo:
OBJECTIVES: To determine if: (a) safe clinical decision making can be taught to undergraduate final year medical students and (b) if such students can be taught to specifically recognise illness severity from nominal clinical data.
METHODS: 115 final year undergraduate medical students completed a 3 hour interactive Safe Thinking Workshop which focussed entirely on nontechnical skills such as potential perceptive pitfalls, attention to detail, teamwork and safe clinical decision making. The study involved students inspecting and interpreting a set of arterial blood gas results relating to a patient with acute respiratory distress, then answering a short questionnaire addressing biochemical diagnosis, clinical diagnosis and effective management. A separate question was embedded in the questionnaire to determine if astute students could determine the severity of the illness from the CO2 value provided. The study group (n = 58) completed the questionnaire immediately after the Safe Thinking Workshop, whilst the control group (n = 57) completed the questionnaire prior to the Workshop.
RESULTS: The mean total score for study students was 80.51%, with a mean total score of 63.86% for the control group (Student’s t-test; p<0.05). Correct classification of illness severity was observed in 10.35% of study students, compared with 3.51% of control students (p<0.05).
CONCLUSION: These results suggest that safe clinical decision making and recognition of illness severity can be fostered by specific teaching in the nontechnical skill areas described above.
Resumo:
OBJECTIVES: To determine if cognitive reflection has a positive influence on clinical decision making in undergraduate medical students. METHODS: 153 final year undergraduate medical students completed a 3 hour interactive Safe Thinking Workshop on nontechnical skills and patient safety, incorporating an introduction to metacognitive concepts. All students underwent augmented Cognitive Reflective Testing during the workshop. Students then inspected and interpreted a set of arterial blood gas results relating to a patient with acute respiratory distress, then answered a short questionnaire addressing biochemical diagnosis, clinical diagnosis and effective management. A separate question was embedded in the questionnaire to determine if astute students could determine the severity of the illness. The study group (n = 78) completed the questionnaire immediately after the Safe Thinking Workshop, whilst the control group (n = 75) completed the questionnaire prior to the Workshop.RESULTS: The mean total score for study students was 80.51%, with a mean total score of 57.9% for the control group (t-test; p<0.05). Correct classification of illness severity was observed in 13.2% of study students, compared with 4.1% of control students (p<0.05). CONCLUSION: These results suggest that clinical decision making and recognition of illness severity can be enhanced by specific teaching in nontechnical skills, metacognitiion and cognitive reflection.
Resumo:
At the Sixth International Cough Symposium, eleven clinical posters were presented at the podium in a formal symposium session. Here we summarize the posters and the discussions.
Resumo:
Introduction: Secretory leucocyte protease inhibitor and elafin are members of the whey acidic protein (WAP), or WAP four disulfide-core (WFDC), family of proteins and have multiple contributions to innate defence including inhibition of neutrophil serine proteases and inhibition of the inflammatory response to lipopolysaccharide (LPS). This study aimed to explore potential activities of WFDC12, a previously uncharacterised WFDC protein expressed in the lung. Methods: Recombinant expression and purification of WFDC12 were optimised in Escherichia coli. Antiprotease, antibacterial and immunomodulatory activities of recombinant WFDC12 were evaluated and levels of endogenous WFDC12 protein were characterised by immunostaining and ELISA. Results: Recombinant WFDC12 inhibited cathepsin G, but not elastase or proteinase-3 activity. Monocytic cells pretreated with recombinant WFDC12 before LPS stimulation produced significantly lower levels of the pro-inflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared with cells stimulated with LPS alone. Recombinant WFDC12 became conjugated to fibronectin in a transglutaminase-mediated reaction and retained antiprotease activity. In vivo WFDC12 expression was confirmed by immunostaining of human lung tissue sections. WFDC12 levels in human bronchoalveolar lavage fluid from healthy and lung-injured patients were quantitatively compared, showing WFDC12 to be elevated in both patients with acute respiratory distress syndrome and healthy subjects treated with LPS, relative to healthy controls. Conclusions: Together, these results suggest a role for this lesser known WFDC protein in the regulation of lung inflammation.
Resumo:
Non-typeable Haemophilus influenzae (NTHi) is an opportunist pathogen well adapted to the human upper respiratory tract and responsible for many respiratory diseases. In the human airway, NTHi is exposed to pollutants, such as alkylating agents, that damage its DNA. In this study, we examined the significance of genes involved in the repair of DNA alkylation damage in NTHi virulence. Two knockout mutants, tagI and mfd, encoding N(3)methyladenine-DNA glycosylase I and the key protein involved in transcription-coupled repair, respectively, were constructed and their virulence in a BALB/c mice model was examined. This work shows that N-3-methyladenine-DNA glycosylase I is constitutively expressed in NTHi and that it is relevant for its virulence.
Resumo:
Purpose of review: Appropriate selection and definition of outcome measures are essential for clinical trials to be maximally informative. Core outcome sets (an agreed, standardized collection of outcomes measured and reported in all trials for a specific clinical area) were developed due to established inconsistencies in trial outcome selection. This review discusses the rationale for, and methods of, core outcome set development, as well as current initiatives in critical care.
Recent findings: Recent systematic reviews of reported outcomes and measurement instruments relevant to the critically ill highlight inconsistencies in outcome selection, definition, and measurement, thus establishing the need for core outcome sets. Current critical care initiatives include development of core outcome sets for trials aimed at reducing mechanical ventilation duration; rehabilitation following critical illness; long-term outcomes in acute respiratory failure; and epidemic and pandemic studies of severe acute respiratory infection.
Summary: Development and utilization of core outcome sets for studies relevant to the critically ill is in its infancy compared to other specialties. Notwithstanding, core outcome set development frameworks and guidelines are available, several sets are in various stages of development, and there is strong support from international investigator-led collaborations including the International Forum for Acute Care Trialists.
Resumo:
Sepsis is the most frequent cause of death in hospitalized patients, and severe sepsis is a leading contributory factor to acute respiratory distress syndrome (ARDS). At present, there is no effective treatment for these conditions, and care is primarily supportive. Murine sialic acid-binding immunoglobulin-like lectin-E (Siglec-E) and its human orthologs Siglec-7 and Siglec-9 are immunomodulatory receptors found predominantly on hematopoietic cells. These receptors are important negative regulators of acute inflammatory responses and are potential targets for the treatment of sepsis and ARDS. We describe a Siglec-targeting platform consisting of poly(lactic-co-glycolic acid) nanoparticles decorated with a natural Siglec ligand, di(α2→8) N-acetylneuraminic acid (α2,8 NANA-NP). This nanoparticle induced enhanced oligomerization of the murine Siglec-E receptor on the surface of macrophages, unlike the free α2,8 NANA ligand. Furthermore, treatment of murine macrophages with these nanoparticles blocked the production of lipopolysaccharide-induced inflammatory cytokines in a Siglec-E-dependent manner. The nanoparticles were also therapeutically beneficial in vivo in both systemic and pulmonary murine models replicating inflammatory features of sepsis and ARDS. Moreover, we confirmed the anti-inflammatory effect of these nanoparticles on human monocytes and macrophages in vitro and in a human ex vivo lung perfusion (EVLP) model of lung injury. We also established that interleukin-10 (IL-10) induced Siglec-E expression and α2,8 NANA-NP further augmented the expression of IL-10. Indeed, the effectiveness of the nanoparticle depended on IL-10. Collectively, these results demonstrated a therapeutic effect of targeting Siglec receptors with a nanoparticle-based platform under inflammatory conditions.
Resumo:
RATIONALE: Cigarette smoke exposure is associated with an increased risk of the acute respiratory distress syndrome (ARDS); however, the mechanisms underlying this relationship remain largely unknown.
OBJECTIVE: To assess pathways of lung injury and inflammation in smokers and non-smokers with and without lipopolysaccharide (LPS) inhalation using established biomarkers.
METHODS: We measured plasma and bronchoalveolar lavage (BAL) biomarkers of inflammation and lung injury in smokers and non-smokers in two distinct cohorts of healthy volunteers, one unstimulated (n=20) and one undergoing 50 μg LPS inhalation (n=30).
MEASUREMENTS AND MAIN RESULTS: After LPS inhalation, cigarette smokers had increased alveolar-capillary membrane permeability as measured by BAL total protein, compared with non-smokers (median 274 vs 208 μg/mL, p=0.04). Smokers had exaggerated inflammation compared with non-smokers, with increased BAL interleukin-1β (p=0.002), neutrophils (p=0.02), plasma interleukin-8 (p=0.003), and plasma matrix metalloproteinase-8 (p=0.006). Alveolar epithelial injury after LPS was more severe in smokers than non-smokers, with increased plasma (p=0.04) and decreased BAL (p=0.02) surfactant protein D. Finally, smokers had decreased BAL vascular endothelial growth factor (VEGF) (p<0.0001) with increased soluble VEGF receptor-1 (p=0.0001).
CONCLUSIONS: Cigarette smoke exposure may predispose to ARDS through an abnormal response to a 'second hit,' with increased alveolar-capillary membrane permeability, exaggerated inflammation, increased epithelial injury and endothelial dysfunction. LPS inhalation may serve as a useful experimental model for evaluation of the acute pulmonary effects of existing and new tobacco products.
Resumo:
Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in pre-clinical models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the anti-microbial effect of MSC in vivo depends on their modulation of macrophage phagocytic activity which occurs through mitochondrial transfer. We established that selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposomal clodronate resulted in complete abrogation of MSC anti-microbial effect in the in vivo model of E.coli pneumonia. Furthermore, we showed that MSC administration was associated with enhanced AM phagocytosis in vivo. We showed that direct co-culture of MSC with monocyte-derived macrophages (MDMs) enhanced their phagocytic capacity. By fluorescent imaging and flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages which occurred at least partially through TNT-like structures. We also detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally, partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on macrophage phagocytosis in vitro and the anti-microbial effect of MSC in vivo.
Collectively, this work for the first time demonstrates that mitochondrial transfer from MSC to innate immune cells leads to enhancement in phagocytic activity and reveals an important novel mechanism for the anti-microbial effect of MSC in ARDS.
Resumo:
Aims/purpose: Getting off the ventilator is an important patient-centred outcome for patients with acute respiratory failure. It signifies an improvement in patient condition, enables easier communication, reduces fear and anxiety and consequently a reduced requirement for sedatives. Weaning from ventilation therefore is a core ICU nursing task that is addressed in this presentation.
Presentation description: There are different schools of thought on when ventilator weaning begins including: (a) from intubation with titration of support; and (b) only when the patient’s condition improves. There are also different schools of thought on how to wean including gradual reductions in ventilator support to: (a) a low level consistent with extubation; or (b) to a level to attempt a spontaneous breathing trial followed by extubation if successful. Regardless of the approach, what is patient-relevant is the need to determine early when the patient may be ‘ready’ to discontinue ventilation. This time point can be assessed using simple criteria and should involve all ICU staff to the level of their experience. This presentation challenges the notion that only senior nurses or nurses with a ‘weaning course’ should be involved in the weaning process and proposes opportunities for engaging nurses with all levels of experience.
Conclusion: An ICU nursing taskforce that is focused and engaged in determining patient readiness for weaning can make a strong contribution to patient-relevant outcomes.