114 resultados para Abrupt edges removal
Resumo:
Efficient scrubbing of mercury vapour from natural gas streams has been demonstrated both in the laboratory and on an industrial scale, using chlorocuprate(ii) ionic liquids impregnated on high surface area porous solid supports, resulting in the effective removal of mercury vapour from natural gas streams. This material has been commercialised for use within the petroleum gas production industry, and has currently been running continuously for three years on a natural gas plant in Malaysia. Here we report on the chemistry underlying this process, and demonstrate the transfer of this technology from gram to ton scale.
Resumo:
Genetically-engineered bacteria and reactive DNA networks detect edges of objects, as done in our retinas and as also found within computer vision. We now demonstrate that simple molecular logic systems (a combination of a pH sensor, a photo acid generator and a pH buffer spread on paper) without any organization can achieve this relatively complex computational goal with good-fidelity. This causes a jump in the complexity achievable by molecular logic-based computation and extends its applicability. The molecular species involved in light dose-driven 'off-on-off' fluorescence is diverted in the ‘on’ state by proton diffusion from irradiated to unirradiated regions where it escapes a strong quencher, thus visualizing the edge of a mask.
Resumo:
There has been a significant increase in the occurrence of cyanobacterial blooms in freshwaters over the past few decades due to escalating nutrient levels. These cyanobacteria release a range of toxins, for example microcystins which are chemically very stable. Many cyanotoxins are consequently very difficult to remove from water using existing treatment technologies. Semiconductor photocatalysis, however, has proven to be a very effective process for the removal of these compounds from water. In this chapter we consider the application of this highly versatile and exciting technology for the decomposition of cyanotoxins. Furthermore design concepts for solar photocatalytic reactors that could be utilized for the removal of these toxins are also considered
Resumo:
Semiconductor photocatalysis has been applied to the remediation of an extensive range of chemical pollutants in water over the past 30 years. The application of this versatile technology for removal of micro-organisms and cyanotoxins has recently become an area that has also been the subject of extensive research particularly over the past decade. This paper considers recent research in the application of semiconductor photocatalysis for the treatment of water contaminated with pathogenic micro-organisms and cyanotoxins. The basic processes involved in photocatalysis are described and examples of recent research into the use of photocatalysis for the removal of a range of microorganisms are detailed. The paper concludes with a review of the key research on the application of this process for the removal of chemical metabolites generated from cyanobacteria.
Resumo:
Hydrocarbons contamination of the marine environment generated by the offshore oil and gas industry is generated from a number of sources including oil contaminated drill cuttings and produced waters. The removal of hydrocarbons from both these sources is one of the most significant challenges facing this sector as it moves towards zero emissions. The application of a number of techniques which have been used to successfully destroy hydrocarbons in produced water and waste water effluents has previously been reported. This paper reports the application of semiconductor photocatalysis as a final polishing step for the removal of hydrocarbons from two waste effluent sources. Two reactor concepts were considered: a simple flat plate immobilised film unit, and a new rotating drum photocatalytic reactor. Both units proved to be effective in removing residual hydrocarbons from the effluent with the drum reactor reducing the hydrocarbon content by 90% under 10 minutes.
Resumo:
As part of any drilling cuttings pile removal process the requirement for monitoring the release of contaminants into the marine environment will be critical. Traditional methods for such monitoring involve taking samples for laboratory analysis. This process is time consuming and only provides data on spot samples taken from a limited number of locations and time frames. Such processes, therefore, offer very restricted information. The need for improved marine sensors for monitoring contaminants is established. We report here the development and application of a multi-capability optical sensor for the real-time in situ monitoring of three key marine environmental and offshore/oil parameters: hydrocarbons, synthetic-based fluids and heavy metal concentrations. The use of these sensors will be a useful tool for real-time in situ environmental monitoring during the process of decommissioning offshore structures. Multi-capability array sensors could also provide information on the dispersion of contamination from drill cuttings piles either while they are in situ or during their removal.
Resumo:
The incidence of cyanobacterial blooms in freshwaters, including drinking water reservoirs, has increased over the past few decades due to rising nutrient levels. Microcystins are hepatotoxins released from cyanobacteria and have been responsible for the death of humans as well as domestic and wild animals. Microcystins are chemically very stable and many processes have only limited efficacy in removing them. In this paper we review a range of water treatment methods which have been applied to removing microcystins from potable waters.
Resumo:
RATIONALE: Epithelial remodelling in asthma is characterised by goblet cell hyperplasia and mucus hypersecretion for which no therapies exist. Differentiated bronchial air-liquid interface cultures from asthmatic children display high goblet cell numbers. Epidermal growth factor and its receptor have been implicated in goblet cell hyperplasia.
OBJECTIVES: We hypothesised that EGF removal or tyrphostin AG1478 treatment of differentiating air-liquid interface cultures from asthmatic children would result in a reduction of epithelial goblet cells and mucus secretion.
METHODS: In Aim 1 primary bronchial epithelial cells from non-asthmatic (n = 5) and asthmatic (n = 5) children were differentiated under EGF-positive (10ng/ml EGF) and EGF-negative culture conditions for 28 days. In Aim 2, cultures from a further group of asthmatic children (n = 5) were grown under tyrphostin AG1478, a tyrosine kinase inhibitor, conditions. All cultures were analysed for epithelial resistance, markers of differentiation using immunocytochemistry, ELISA for MUC5AC mucin secretion and qPCR for MUC5AC mRNA.
RESULTS: In cultures from asthmatic children the goblet cell number was reduced in the EGF negative group (p = 0.01). Tyrphostin AG1478 treatment of cultures from asthmatic children had significant reductions in goblet cells at 0.2μg/ml (p = 0.03) and 2μg/ml (p = 0.003) as well as mucus secretion at 2μg/ml (p = 0.04).
CONCLUSIONS: We have shown in this preliminary study that through EGF removal and tyrphostin AG1478 treatment the goblet cell number and mucus hypersecretion in differentiating air-liquid interface cultures from asthmatic children is significantly reduced. This further highlights the epidermal growth factor receptor as a potential therapeutic target to inhibit goblet cell hyperplasia and mucus hypersecretion in asthma.
Resumo:
Background: Randomised controlled trials have demonstrated significant reductions in colorectal cancer (CRC) incidence and mortality associated with polypectomy. However, little is known about whether polypectomy is effective at reducing CRC risk in routine clinical practice. The aim of this investigation was to quantify CRC risk following polypectomy in a large prospective population-based cohort study.
Methods: Patients with incident colorectal polyps between 2000 and 2005 in Northern Ireland (NI) were identified via electronic pathology reports received to the NI Cancer Registry (NICR). Patients were matched to the NICR to detect CRC and deaths up to 31st December 2010. CRC standardised incidence ratios (SIRs) were calculated and Cox proportional hazards modelling applied to determine CRC risk.
Results: During 44,724 person-years of follow-up, 193 CRC cases were diagnosed amongst 6,972 adenoma patients, representing an annual progression rate of 0.43%. CRC risk was significantly elevated in patients who had an adenoma removed (SIR 2.85; 95% CI: 2.61 to 3.25) compared with the general population. Male sex, older age, rectal site and villous architecture were associated with an increased CRC risk in adenoma patients. Further analysis suggested that not having a full colonoscopy performed at, or following, incident polypectomy contributed to the excess CRC risk.
Conclusions: CRC risk was elevated in individuals following polypectomy for adenoma, outside of screening programmes.
Impact: This finding emphasises the need for full colonoscopy and adenoma clearance, and appropriate surveillance, after endoscopic diagnosis of adenoma.
Resumo:
Climate change during the last deglaciation was strongly influenced by the „bipolar seesaw‟, producing antiphase climate responses between the North and South Atlantic. However, mounting evidence demands refinements of this model, with the occurrence of abrupt events in southern low to mid latitudes occurring in-phase with North Atlantic climate. Improved constraints on the north-south phasing and spatial extent of these events are therefore critical to
understanding the mechanisms that propagate abrupt events within the climate system. We present a 19,400 year multi-proxy record of climate change obtained from a rock hyrax midden in southernmost Africa. Arid anomalies in phase with the Younger Dryas and 8.2 ka events are apparent, indicating a clear shift in the influence of the bipolar seesaw, which diminished as the Earth warmed, and was succeeded after ~14.6 ka by the emergence of a dominant interhemispheric atmospheric teleconnection.
The nitric oxide ISO photocatalytic reactor system: Measurement of NOx removal activity and capacity
Resumo:
Although the NO removal-based air-purification ISO method ISO 22197-1:2007 is well established, its preconditioning requirements mean that only the initial activity of the photocatalyst under test is measured owing to the often-reported, gradual alteration of the surface kinetics for NO oxidation by air through the accumulation of surface HNO3. Herein, we compare the photocatalytic NO removal abilities of a number of different, common TiO2 materials, surface-saturated with photogenerated HNO3, with their behaviours observed during the typical 5 h-long ISO standard test. It is found that all the TiO2 materials studied eventually become largely NO to NO2 converters after sufficient exposure to NO under irradiation (>5 h) due to the accumulation of surface HNO3. The UV exposure time, t*, necessary to reach this HNO3 saturated condition is different for each different catalyst. As a consequence, an alternative preconditioning process for the ISO method is proposed which can be used to provide a more realistic measure of the photocatalytic activity of the underlying material and provide a measure of the NOx removing capacity of the photocatalytic material under test.