102 resultados para ALUMINA CATALYST
Resumo:
The effect of spillover processes on the activity of a catalyst system consisting of a mixed oxygen ion and electronic conducting support La0.6Sr0.4Co0.2Fe0.8O3d and a metal catalyst (Pt) were investigated. Two types of model single-pellet catalysts were used employing Pt deposited on both sides of a dense LSCF disc pellet. One of these single pellets employed highly disperse, physically non-continuous Pt, in contrast to studies on electrochemical promotion, while the other used a low dispersion continuous film. Driving forces for promoter migration were controlled through the manipulation of the oxygen chemical potential difference across the membrane. Catalyst rate modification was observed in all cases. However, it was found that there is a complex relationship between the rate modification, the driving forces for spillover and the geometrical arrangement of the catalyst on the support (i.e. catalyst dispersion).
Resumo:
Catalysts currently employed for the polymerization of ethylene have previously been found to deactivate in the presence of oxygen. It is, therefore, important that oxygen is removed from the ethylene feedstock prior to the polymerization. The Ag/gamma-Al2O3 catalyst exhibits excellent activity and selectivity toward oxygen reduction with hydrogen in the presence of ethylene. TAP vacuum pulse experiments have been utilised to understand the catalytic behaviour of the Ag/gamma-Al2O3 catalyst. TAP multi-pulse experiments have determined the types of active sites that are found on the Ag/gamma-Al2O3 catalyst, and the intrinsic activity of these sites. The lifetime of the reactive adsorbed oxygen intermediate has also been determined through TAP consecutive pulse experiments. Multi-pulse and consecutive pulse data have been combined with ethylene adsorption/desorption rate constants to provide an overview of the Ag/gamma-Al2O3 catalyst system.
Resumo:
A new method to spatially probe heterogeneous catalysed reactions within a packed bed of catalyst has been developed. The spatial resolution is achieved using a stationary perforated capillary coupled to a mass spectrometer while the catalyst bed is moved. The oxidation of CO promoted by H-2 over a Pd catalyst has been used to demonstrate the technique.
Resumo:
The deactivation of a silver-based hydrocarbon selective catalytic reduction catalyst by SOx and the subsequent regeneration under various operating conditions has been investigated. Using a sulfur trap based on a silica-supported catalyst it was found that, for a Ag/SiO2 + Ag/Al2O3 combination, the negative effect of SO2 on the n-octane-SCR reaction can be eliminated under normal operating conditions. The trap can be regenerated by hydrogen at low temperatures or at higher temperatures using a hydrocarbon reductant.
Resumo:
In the preparation of silica-supported nickel oxide from nickel nitrate impregnation and drying, the replacement of the traditional air calcination step by a thermal treatment in 1% NO/Ar prevents agglomeration, resulting in highly dispersed NiO. The mechanism by which NO prevents agglomeration was investigated by using combined in situ diffuse reflectance infrared fourier transform (DRIFT) spectroscopy and mass spectrometry (MS). After impregnation and drying, a supported nickel hydroxynitrate phase with composition Ni(3)(NO(3))(2)(OH)(4) had been formed. Comparison of the evolution of the decomposition gases during the thermal decomposition of Ni(3)(NO(3))(2)(OH)(4) in labeled and unlabeled NO and O(2) revealed that NO scavenges oxygen radicals, forming NO(2). The DRIFT spectra revealed that the surface speciation evolved differently in the presence of NO as compared with in O(2) or Ar. It is proposed that oxygen scavenging by NO depletes the Ni(3)(NO(3))(2)(OH)(4) phase of nitrate groups, creating nucleation sites for the formation of NiO, which leads to very small (similar to 4 nm) NiO particles and prevents agglomeration.
Resumo:
On-stream deactivation during a water gas shift (WGS) reaction over gold supported on a ceria-zirconia catalyst was examined. Although the fresh catalyst has very high low temperature (<200 degrees C) for WGS activity, a significant loss of CO conversion is found under steady-state operations over hours. This has been shown to be directly related to the concentration of water in the gas phase. The same catalyst also undergoes thermal deactivation above 250 degrees C, and using a combined experimental and theoretical approach, a common deactivation mechanism is proposed. In both cases, the gold nanoparticles, which are found under reaction conditions, are thought to detach from the oxide support either through hydrolysis, <200 degrees C, or thermally, > 200 degrees C. This process reduces the metal-support interaction, which is considered to be critical in determining the high activity of the catalyst.
Resumo:
The temporal analysis of products (TAP) technique was successfully applied for the first time to investigate the reverse water-gas shift (RWGS) reaction over a 2% Pt/CeO2 catalyst. The adsorption/desorption rate constants for CO2 and H-2 were determined in separate TAP pulse-response experiments, and the number of H-containing exchangeable species was determined using D-2 multipulse TAP experiments. This number is similar to the amount of active sites observed in previous SSITKA experiments. The CO production in the RWGS reaction was studied in a TAP experiment using separate (sequential) and simultaneous pulsing Of CO2 and H-2. A small yield of CO was observed when CO2 was pulsed alone over the reduced catalyst, whereas a much higher CO yield was observed when CO2 and H-2 were pulsed consecutively. The maximum CO yield was observed when the CO2 pulse was followed by a H-2 pulse with only a short (1 s) delay. Based on these findings, we conclude that an associative reaction mechanism dominates the RWGS reaction under these experimental conditions. The rate constants for several elementary steps can be determined from the TAP data. In addition, using a difference in the time scale of the separate reaction steps identified in the TAP experiments, it is possible to distinguish a number of possible reaction pathways. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
In situ EXAFS has been used to examine the hydrogen effect on the selective catalytic reduction of NOx over silver/alumina catalysts. For all SCR conditions used, with or without co-reductant (H-2 or CO), the catalyst structure remained the same. Significant changes in the catalyst were only found under reducing conditions. The enhanced activity found in the presence of hydrogen is thought to be due to a chemical effect and not the result of a change in the structure of the active site.
Resumo:
Oxidative dehydrogenation of ethane was performed under conventional microreactor and TAP reactor conditions over a Pt/Al2O3 catalyst between 100 and 600 degreesC. During TAP studies, no ethene was produced whereas under flow conditions small but significant ethene formation was observed. This is consistent with a mechanism involving the gas-phase production of ethene rather than via a surface reaction. In comparison, both hydrogen and methane formation were found under TAP conditions and the trends with temperature and surface oxide composition are interpreted in terms of successive dehydrogenation steps on the catalyst surface. It is further observed that periodic introduction of the reactants can minimize deactivation processes. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Carbon nanotubes can be grown as forests of aligned fibers on a substrate with a catalyst coated prior to or added during synthesis. A major process interruption can initiate the growth of second and successive layers of forest on top or at the base of the existing layers which are thereby lifted up. We report on the generation of multilayer CNT forests where the first forest is generated either by catalyst coinjection (CCI) of ferrocene with hydrocarbon (xylene) or by catalyst predeposition (CPD) of iron followed with hydrocarbon (acetylene). Subsequent layers are then produced by CCI alone to give uniform (all CCI) or mixed (CPD and CCI) structures to study the distribution of the iron catalyst and CNT morphology and to determine whether the CPD forest templates or otherwise influences the growth of subsequent CCI forests. The bottom-up base growth of second and subsequent CCI forests is reaction rate controlled. CCI multilayer forests accumulate catalyst (iron) in a variety of distinct locations. A pre-existing CPD forest modifies subsequent CCI forest initiation, morphology, and catalyst distribution but does not itself accumulate catalyst or change appearance. © 2009 American Chemical Society.
Resumo:
An attempt is made to immobilize the homogeneous metal chloride/EMIMCl catalyst for glucose dehydration to 5-hydroxymethylfurfural. To this end, ionic liquid fragments were grafted to the surface of SBA-15 to generate a heterogenized mimick of the homogeneous reaction medium. Despite a decrease in the surface area, the ordered mesoporous structure of SBA-15 was largely retained. Metal chlorides dispersed in such ionic liquid film are able to convert glucose to HMF with much higher yields as is possible in the aqueous phase. The reactivity order CrCl > AlCl > CuCl > FeCl is similar to the order in the ionic liquid solvent, yet the selectivity are lower. The HMF yield of the most promising CrCl-Im-SBA-15 can be improved by using a HO:DMSO mixture as the reaction medium and a 2-butanol/MIBK extraction layer. Different attempts to decrease metal chloride leaching by using different solvents are described. © 2013 American Institute of Chemical Engineers Environ Prog.
Resumo:
The asymmetric Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene and the Mukaiyama-aldol reaction between methylpyruvate and 1-phenyl-1-trimethylsilyloxyethene have been catalysed by heterogeneous copper(II)-bis(oxazoline)-based polymer immobilised ionic liquid phase (PIILP) systems generated from a range of linear and cross linked ionic polymers. In both reactions selectivity and ee were strongly influenced by the choice of polymer. A comparison of the performance of a range of Cu(II)-bis(oxazoline)-PIILP catalyst systems against analogous supported ionic liquid phase (SILP) heterogeneous catalysts as well as their homogeneous counterparts has been undertaken and their relative merits evaluated.