149 resultados para viscosity solutions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of six charged iron(III) tetraarylporphyrins with chemical oxidants has been investigated. In aqueous solution each can be converted by tert-butyl hydroperoxide or monopersulphate into its corresponding oxoiron(IV) porphyrin, whereas in methanol only the iron(III) tetra(N-methylpyridyl)porphyrins form detectable ferryl porphyrins at ambient temperatures. On standing, the iron species revert to the parent porphyrin with a small loss due to non-reversible oxidative destruction. That the oxidised porphyrin intermediates are oxoiron(IV) species has been determined using UV-VIS, resonance Raman, H1 NMR and EPR spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic conductivities of twelve protic ionic liquids (PILs) and their mixtures with water over the whole composition range are reported at 298.15 K and atmospheric pressure. The selected PILs are the pyrrolidinium-based PILs containing nitrate, acetate or formate anions; the formate-based PILs containing diisopropylethylammonium, amilaminium, quinolinium, lutidinium or collidinium cations; and the pyrrolidinium alkylcarboxylates, [Pyrr][CnH2n+1COO] with n = 5–8. This study was performed in order to investigate the influence of molecular structures of the ions on the ionic conductivities in aqueous solutions. The ionic conductivities of the aqueous solutions are 2–30 times higher than the conductivities of pure PILs. The maximum in conductivity varies from ww=0.41???to???0.74 and is related to the nature of cations and anions. The molar conductance and the molar conductance at infinite dilution for (PIL + water) solutions are then determined. Self-diffusion coefficients of the twelve protic ionic liquids in water at infinite dilution and at 298.15 K are calculated by using the Nernst–Haskell, the original and the modified Wilke–Chang equations. These calculations show that similar values are obtained using the modified Wilke–Chang and the Nernst–Haskell equations. Finally, the effective hydrodynamic (or Stokes) radius of the PILs was determined by using the Stokes–Einstein equation. A linear relationship was established in order to predict this radius as a function of the anion alkyl chain length in the case of the pyrrolidinium alkylcarboxylates PILs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quenching of the electronically-excited, lumophoric state of [Ru(bpy)(3)(2+)(Ph4B-)(2)] by oxygen is studied in a wide variety of neat plasticizers. The Stern-Volmer constant, K-SV, is found to be inversely dependent upon the viscosity of the quenching medium, although the natural lifetime of the electronically excited state of [RU(bPY)(3)(2+)(Ph4B-)(2)] is largely independent of medium. The least viscous of the plasticizers tested, triethyl phosphate, did not, however, produce highly sensitive optical oxygen sensors when used to plasticize [RU(bPY)(3)(2+)(Ph4B-)(2)]-containing cellulose acetate butyrate (CAB) and poly(methyl methacrylate) (PMMA) films, Instead, the compatibility of the polymer-plasticizer combination, as measured by the difference in the values of the solubility parameter of the two, appears to be a major factor in determining the overall oxygen sensitivity of the thin plastic films. For highly compatible polymer-plasticizer combinations, the plasticizer with the lowest viscosity produces films of the highest oxygen sensitivity. This situation arises because in the film the quenching process is partly diffusion-controlled and, as a result, the quenching rate constant is inversely proportional to the effective viscosity of the reaction medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt viscosity is a key indicator of product quality in polymer extrusion processes. However, real time monitoring and control of viscosity is difficult to achieve. In this article, a novel “soft sensor” approach based on dynamic gray-box modeling is proposed. The soft sensor involves a nonlinear finite impulse response model with adaptable linear parameters for real-time prediction of the melt viscosity based on the process inputs; the model output is then used as an input of a model with a simple-fixed structure to predict the barrel pressure which can be measured online. Finally, the predicted pressure is compared to the measured value and the corresponding error is used as a feedback signal to correct the viscosity estimate. This novel feedback structure enables the online adaptability of the viscosity model in response to modeling errors and disturbances, hence producing a reliable viscosity estimate. The experimental results on different material/die/extruder confirm the effectiveness of the proposed “soft sensor” method based on dynamic gray-box modeling for real-time monitoring and control of polymer extrusion processes. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Densities and viscosities were measured as a function of temperature for six ionic liquids (1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium ethylsulfate and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide. The density and the viscosity were obtained using a vibrating tube densimeter from Anton Paar and a rheometer from Rheometrics Scientific at temperatures up to 393 K and 388 K with an accuracy of 10-3 g cm-3 and 1%, respectively. The effect of the presence of water on the measured values was also examined by studying both dried and water-saturated samples. A qualitative analysis of the evolution of density and viscosity with cation and anion chemical structures was performed. © The Royal Society of Chemistry 2006.