117 resultados para vertical movement
Resumo:
The ability to predict the behavior of masonry materials is crucial to conserve building stone. Natural stone, such as sandstone, is not immune from the processes of weathering in the built environment and suffers from decay by granular disintegration, contour scaling, and multiple flaking. Spatial variation of rock properties is a major contributing factor to inconsistent responses to weathering. This has implications for moisture movement and salt input and output and storage, and results in unpredictability in the decay dynamics of masonry materials. This article explores the use of variography and kriging to investigate the spatial interactions between the trigger factors of stone decay, in particular, permeability and its effect on salt penetration. Sandstone blocks were used to represent fresh building stones from a weathering perspective and gave baseline characteristics for the interpretation of subsequent deterioration and decay pathways. Simulated weathering trials involved preloading a sandstone block with salt and subjecting a separate block to 20 cycles of a weathering trial designed to simulate a temperate weathering regime. Geostatistical analysis indicated differences in the spatial variation of permeability of the fresh rock and that subjected to the weathering regimes. Spatial prediction and visualization showed differences in the spatial continuity of permeability in a horizontal and vertical direction through the preloaded block after salt weathering. Continual wetting with salt and alternate heating increased permeability in a vertical direction, enabling the ingress and movement of salt and moisture more effectively through the stone.
Resumo:
Since its emergence as a discipline in the 1960s, women’s history has had a profound effect on the study of the past. Scholarship on women’s experiences of and contributions to the Russian revolutionary movement has increased exponentially since the publication of a number of biographies of Aleksandra Kollontai in the 1970s and 1980s and a comprehensive picture has emerged of women’s involvement in all the major revolutionary parties, as leading figures as well as rank and file activists. Despite this wealth of historical discovery, remarkably little has found its way into so-called ‘general’ histories of the revolution. An integrated history, which is the ultimate aim of women’s history, has yet to be produced for the Russian revolutionary movement, even though recent prosopographical studies of revolutionary women have made clear the numerous ways in which men and women cooperated and interacted on a daily basis in the underground. This article explores the nature of and reasons for this failure, makes a case for why incorporating women’s experiences into the grand narrative of the Russian revolution is important and discusses how this might be achieved.
Resumo:
Algal blooms caused by cyanobacteria are characterized by two features with different time scales: one is seasonal outbreak and collapse of a bloom and the other is diurnal vertical migration. Our two-component mathematical model can simulate both phenomena, in which the state variables are nutrients and cyanobacteria. The model is a set of one-dimensional reaction-advection-diffusion equations, and temporal changes of these two variables are regulated by the following five factors: (1) annual variation of light intensity, (2) diurnal variation of light intensity, (3) annual variation of water temperature, (4) thermal stratification within a water column and (5) the buoyancy regulation mechanism. The seasonal change of cyanobacteria biomass is mainly controlled by factors, (1), (3) and (4), among which annual variations of light intensity and water temperature directly affect the maximum growth rate of cyanobacteria. The latter also contributes to formation of the thermocline during the summer season. Thermal stratification causes a reduction in vertical diffusion and largely prevents mixing of both nutrients and cyanobacteria between the epilimnion and the hypolimnion. Meanwhile, the other two factors, (2) and (5), play a significant role in diurnal vertical migration of cyanobacteria. A key mechanism of vertical migration is buoyancy regulation due to gas-vesicle synthesis and ballast formation, by which a quick reversal between floating and sinking becomes possible within a water column. The mechanism of bloom formation controlled by these five factors is integrated into the one-dimensional model consisting of two reaction-advection-diffusion equations.
Resumo:
An optimal search theory, the so-called Levy-flight foraging hypothesis(1), predicts that predators should adopt search strategies known as Levy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey(2-4). Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Levy behaviour has recently been questioned(5,6). Consequently, whether foragers exhibit Levy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Levy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Levy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Levy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Levy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Levy-flight foraging hypothesis(1,7), supporting the contention(8,9) that organism search strategies naturally evolved in such a way that they exploit optimal Levy patterns.
Resumo:
Satellite-linked archival transmitters were used to record the movements of three ocean sunfish (Mola mola) in the North East Atlantic. Patterns of depth use and temperature experienced by individual fish were integrated into 4-hour intervals throughout the tracking period and relayed via the Argos system. Data were recorded for 42, 90 and 54 days respectively from the three fish. The first two were tagged off southern Portugal at the end of February 2007 and travelled principally northward, while the third fish was tagged off west Ireland in August 2007 and travelled southward. These patterns are consistent with seasonal migration of ocean sunfish to high latitudes and their Subsequent return south. Maximum depths recorded by the three fish were 432 m, 472 m and 320 m respectively. All three individuals showed a diel pattern in depth use, occurring deeper during the day and shallower at night, a pattern consistent with sunfish tracking normally vertically migrating prey. Sunfish sometimes remained continuously at deeper (>200 m) depths during the day, but at other times they showed extensive movement through the water column typically travelling between their maximum depth and the surface within each 4-h period. The overall pattern to emerge was that ocean sunfish travel extensively in both horizontal and vertical dimensions, presumably in search of their patchily-distributed jellyfish prey.