80 resultados para tubocurarine chloride


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inverse analysis for reactive transport of chlorides through concrete in the presence of electric field is presented. The model is solved using MATLAB’s built-in solvers “pdepe.m” and “ode15s.m”. The results from the model are compared with experimental measurements from accelerated migration test and a function representing the lack of fit is formed. This function is optimised with respect to varying amount of key parameters defining the model. Levenberg-Marquardt trust-region optimisation approach is employed. The paper presents a method by which the degree of inter-dependency between parameters and sensitivity (significance) of each parameter towards model predictions can be studied on models with or without clearly defined governing equations. Eigen value analysis of the Hessian matrix was employed to investigate and avoid over-parametrisation in inverse analysis. We investigated simultaneous fitting of parameters for diffusivity, chloride binding as defined by Freundlich isotherm (thermodynamic) and binding rate (kinetic parameter). Fitting of more than 2 parameters, simultaneously, demonstrates a high degree of parameter inter-dependency. This finding is significant as mathematical models for representing chloride transport rely on several parameters for each mode of transport (i.e., diffusivity, binding, etc.), which combined may lead to unreliable simultaneous estimation of parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparing the chloride ingress between tradition concretes and AASCs is worthwhile to prove the possibility of increasing concrete lifetime in proximity to sea and deciding while such concretes are practical for use. Findings show that compared to the PC concretes, the AAS concretes have lower rate of chloride ingress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT

One of the binder systems with low environmental footprint is alkali activated slag concretes (AASC), made by adding alkalis such as sodium hydroxide and sodium silicate to industrial by-products such as ground granulated blast furnace slag (GGBS). Whilst they have the similar behaviour as that of traditional cement systems in terms of strength and structural behaviour, AASC do exhibit superior performance in terms of abrasion and acid resistance and fire protection.
In this article, the authors focus their attention on chloride ingress into different grades of AASC. The mix variables in AASC included water-to-binder, binder to aggregate ratio, percentage of alkali and the SiO2/Na2O ratio (silica modulus, Ms). The first challenge is to get mixes for different range of workability (with slump values from 40mm to 240mm) and reasonable early age and long term compressive strength according to each one. Then the chloride diffusion and migration in those mixes were measured and compared with same normal concretes in the existed literature based on chloride penetration depth. Comparing the chloride ingress between tradition concretes and AASCs is worthwhile to prove the possibility of increasing concrete lifetime in proximity to sea and deciding while such concretes are practical for use. Findings show that compared to the PC concretes, the AAS concretes have lower rate of chloride ingress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Researchers are focusing their attention on alternative binder systems using 100% supplementary cementitious materials as it allows better control over the microstructure formation and low to moderate environmental footprint. One such system being considered is alkali activated slag concretes (AASC), made by adding alkalis such as sodium hydroxide and sodium silicate to ground granulated blast furnace slag (GGBS). Whilst they have a similar behaviour as that of traditional cement systems in terms of strength and structural behaviour, AASC are reported to exhibit superior performance in terms of abrasion,acid resistance and fire protection.
In this article, the authors investigate chloride ingress into different grades of AASC. The mix variables in AASC included water to binder, and binder to aggregate ratio, percentage of alkali and the SiO2/Na2O ratio (silica modulus, Ms). The first challenge was to develop mixes for different range of workability (with slump values from 40mm to 240mm) and reasonable early age and long term compressive strength. Further chloride ingress into those mixes were assessed and compared with the data from normal concretes based on literature. Findings show that compared to the PC concretes, the AAS concretes have lower rate of chloride ingress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the important factors in the use of portland cement concrete is its durability, and most of the situations where durability is lacking have been identifi ed and strategies to manage durability have been implemented. Geopolymer concrete, made from an alkali-activated natural pozzolan (AANP), provides an important opportunity for the reduction of carbon dioxide (CO2) emissions associated with the manufacture of concrete but has a limited history of durability studies. Until its different properties are well understood there is no desire to adopt this new technology of unknown provenance by the concrete industry. This paper presents an experimental study of oxygen and chloride permeability of AANP concrete prepared by activating Taftan andesite and Shahindej dacite (Iranian natural pozzolans), with and without calcining, and the correlations between these properties and compressive strength. The results show that compared to ordinary portland cement (OPC) concrete, AANP concrete has lower oxygen permeability at later ages; but it shows moderate to high chloride ion penetrability.