167 resultados para spontaneous cervical artery dissection
Resumo:
Objectives: We sought to replicate the association between the kinesin-like protein 6 (KIF6) Trp719Arg polymorphism (rs20455), and clinical coronary artery disease (CAD).
Background: Recent prospective studies suggest that carriers of the 719Arg allele in KIF6 are at increased risk of clinical CAD compared with noncarriers.
Methods: The KIF6 Trp719Arg polymorphism (rs20455) was genotyped in 19 case-control studies of nonfatal CAD either as part of a genome-wide association study or in a formal attempt to replicate the initial positive reports.
Results: A total of 17,000 cases and 39,369 controls of European descent as well as a modest number of South Asians, African Americans, Hispanics, East Asians, and admixed cases and controls were successfully genotyped. None of the 19 studies demonstrated an increased risk of CAD in carriers of the 719Arg allele compared with noncarriers. Regression analyses and fixed-effects meta-analyses ruled out with high degree of confidence an increase of <2% in the risk of CAD among European 719Arg carriers. We also observed no increase in the risk of CAD among 719Arg carriers in the subset of Europeans with early-onset disease (younger than 50 years of age for men and younger than 60 years of age for women) compared with similarly aged controls as well as all non-European subgroups.
Conclusions: The KIF6 Trp719Arg polymorphism was not associated with the risk of clinical CAD in this large replication study.
Resumo:
An idealized jellium model of conducting nanowires with a geometric constriction is investigated by density functional theory (DFT) in the local spin density (LSD) approximation. The results reveal a fascinating variety of spin and charge patterns arising in wires of sufficiently low (r(s) >= 15) average electron density, pinned at the indentation by an apparent attractive interaction with the constriction. The spin-resolved frequency-dependent conductivity shows a marked asymmetry in the two spin channels, reflecting the spontaneous spin polarization around the wire neck. The relevance of the computational results is discussed in relation to the so-called 0.7 anomaly found by experiments in the low-frequency conductivity of nanowires at near-breaking conditions (see 2008 J. Phys.: Condens Matter 20, special issue on the 0.7 anomaly). Although our mean-field approach cannot account for the intrinsic many-body effects underlying the 0.7 anomaly, it still provides a diagnostic tool to predict impending transitions in the electronic structure.
Resumo:
The electronic structure of thin conducting wires with a narrow geometric constriction has been determined by density-functional theory computations in the local spin density approximation. Spontaneous spin polarization arises in nominally paramagnetic wires at sufficiently low density (r(s)>= 15). Real-space spin-polarization maps show a fascinating variety of magnetic structures pinned at the constriction. The frequency-dependent conductivity is different for the spin-up and spin-down channels and significantly lower than in wires of identically vanishing spin polarization.
Resumo:
BACKGROUND: Advanced glycation endproducts (AGEs) arise from the spontaneous reaction of reducing sugars with the amino groups of macromolecules. AGEs accumulate in tissue as a consequence of diabetes and aging and have been causally implicated in the pathogenesis of several of the end-organ complications of diabetes and aging, including cataract, atherosclerosis, and renal insufficiency. It has been recently proposed that components in mainstream cigarette smoke can react with plasma and extracellular matrix proteins to form covalent adducts with many of the properties of AGEs. We wished to ascertain whether AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers.
MATERIALS AND METHODS: Lens and coronary artery specimens from nondiabetic smokers and nondiabetic nonsmokers were examined by immunohistochemistry, immunoelectron microscopy, and ELISA employing several distinct anti-AGE antibodies. In addition, lenticular extracts were tested for AGE-associated fluorescence by fluorescence spectroscopy.
RESULTS: Immunoreactive AGEs were present at significantly higher levels in the lenses and lenticular extracts of nondiabetic smokers (p < 0.003). Anti-AGE immunogold staining was diffusely distributed throughout lens fiber cells. AGE-associated fluorescence was significantly increased in the lenticular extracts of nondiabetic smokers (p = 0.005). AGE-immunoreactivity was significantly elevated in coronary arteries from nondiabetic smokers compared with nondiabetic nonsmokers (p = 0.015).
CONCLUSIONS: AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers than in nonsmokers, irrespective of diabetes. In view of previous reports implicating AGEs in a causal association with numerous pathologies, these findings have significant ramifications for understanding the etiopathology of diseases associated with smoking, the single greatest preventable cause of morbidity and mortality in the United States.
Resumo:
The Hoxa9 and Meis1 genes represent important oncogenic collaborators activated in a significant proportion of human leukemias with genetic alterations in the MLL gene. In this study, we show that the transforming property of Meis1 is modulated by 3 conserved domains, namely the Pbx interaction motif (PIM), the homeodomain, and the C-terminal region recently described to possess transactivating properties. Meis1 and Pbx1 interaction domain-swapping mutants are dysfunctional separately, but restore the full oncogenic activity of Meis1 when cotransduced in primary cells engineered to overexpress Hoxa9, thus implying a modular nature for PIM in Meis1-accelerated transformation. Moreover, we show that the transactivating domain of VP16 can restore, and even enhance, the oncogenic potential of the Meis1 mutant lacking the C-terminal 49 amino acids. In contrast to Meis1, the fusion VP16-Meis1 is spontaneously oncogenic, and all leukemias harbor genetic activation of endogenous Hoxa9 and/or Hoxa7, suggesting that Hoxa gene activation represents a key event required for the oncogenic activity of VP16-Meis1.
Resumo:
Aim: Two Type I diabetes and control group comparator studies were conducted to assess the reproducibility of FMD and to analyse blood flow data normally discarded during FMD measurement.
Design: The studies were sequential and differed only with regard to operator and ultrasound machine. Seventy-two subjects with diabetes and 71 controls were studied in total.
Methods: Subjects had FMD measured conventionally. Blood velocity waveforms were averaged over 10 pulses post forearm ischaemia and their component frequencies analysed using the wavelet transform, a mathematical tool for waveform analysis. The component frequencies were grouped into 11 bands to facilitate analysis.
Results: Subjects were well-matched between studies. In Study 1, FMD was significantly impaired in subjects with Type I diabetes vs. controls (median 4.35%, interquartile range 3.10-4.80 vs. 6.50, 4.79-9.42, P < 0.001). No differences were detected between groups in Study 2, however. However, analysis of blood velocity waveforms yielded significant differences between groups in two frequency bands in each study.
Conclusions: This report highlights concerns over the reproducibility of FMD measures. Further work is required to fully elucidate the role of analysing velocity waveforms after forearm ischaemia.
Resumo:
This study aimed to test these hypotheses: cystathionine gamma-lyase (CSE) is expressed in a human artery, it generates hydrogen sulfide (H2S), and H2S relaxes a human artery. H2S is produced endogenously in rat arteries from cysteine by CSE. Endogenously produced H2S dilates rat resistance arteries. Although CSE is expressed in rat arteries, its presence in human blood vessels has not been described. In this study, we showed that both CSE mRNA, determined by reverse transcription-polymerase chain reaction, and CSE protein, determined by Western blotting, apparently occur in the human internal mammary artery (internal thoracic artery). Artery homogenates converted cysteine to H2S, and the H2S production was inhibited by DL-propargylglycine, an inhibitor of CSE. We also showed that H2S relaxes phenylephrine-precontracted human internal mammary artery at higher concentrations but produces contraction at low concentrations. The latter contractions are stronger in acetylcholine-prerelaxed arteries, suggesting inhibition of nitric oxide action. The relaxation is partially blocked by glibenclamide, an inhibitor of K-ATP channels. The present results indicate that CSE protein is expressed in human arteries, that human arteries synthesize H2S, and that higher concentrations of H2S relax human arteries, in part by opening K-ATP channels. Low concentrations of H2S contract the human internal mammary artery, possibly by reacting with nitric oxide to form an inactive nitrosothiol. The possibility that CSE, and the H2S it generates, together play a physiological role in regulating the diameter of arteries in humans, as has been demonstrated in rats, should be considered.
Resumo:
We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13 loci newly associated with CAD at P < 5 x 10(-8) and confirmed the association of 10 of 12 previously reported CAD loci. The 13 new loci showed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6% to 17% increase in the risk of CAD per allele. Notably, only three of the new loci showed significant association with traditional CAD risk factors and the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the new CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits.