139 resultados para solution
Resumo:
The development of a plasma discharge at low voltage (200-600 V) in saline solution is characterized using fast and standard CCD camera imaging. Vapor formation, plasma formation, and vapor collapse and subsequent pressure wave propagation are observed. If, with increasing voltage, the total energy deposited is kept approximately constant, the sequence and nature of events are similar but develop faster and more reproducibly at the higher voltages. This is attributed to the slower temporal evolution of the vapor layer at lower voltages which means a greater sensitivity to hydrodynamic instabilities at the vapor-liquid interface.
Resumo:
In this paper, a hardware solution for packet classification based on multi-fields is presented. The proposed scheme focuses on a new architecture based on the decomposition method. A hash circuit is used in order to reduce the memory space required for the Recursive Flow Classification (RFC) algorithm. The implementation results show that the proposed architecture achieves significant performance advantage that is comparable to that of some well-known algorithms. The solution is based on Altera Stratix III FPGA technology.
Resumo:
Data are reported demonstrating the potential role of microscale morphologies, induced by endolithic lichen communities, specifically Verrucaria baldensis, in the initiation and development of mesoscale solution basin formation on limestone in the Burren, Co. Clare. A biophysical model is proposed outlining the different microscale stages leading to solution basin initiation with a progression from initial lichen colonisation and growth, associated biopitting followed by biopit coalescence to form biotroughs, their subsequent enlargement and eventual incipient solution basin formation. This model provides one explanation for solution basin development as this end state may also be achieved through simple solutional means without biological input. The complexity of interactions at the rock / lichen interface are identified with emphasis on the spatial and temporal variability of these underlining the point that, as with macro-topographies at the landscape scale, rock surface micro-topographies also reflect historical weathering legacies.
Resumo:
Undoped and cobalt-doped (1-4 wt.%) ZnO polycrystalline, thin films have been fabricated on quartz substrates using sequential spin-casting and annealing of simple salt solutions. X-ray diffraction (XRD) reveals a wurzite ZnO crystalline structure with high-resolution transmission electron microscopy showing lattice planes of separation 0.26 nm, characteristic of (002) planes. The Co appears to be tetrahedrally co-ordinated in the lattice on the Zn sites (XRD) and has a charge of + 2 in a high-spin electronic state (X-ray photoelectron spectroscopy). Co-doping does not alter the wurzite structure and there is no evidence of the precipitation of cobalt oxide phases within the limits of detection of Raman and XRD analysis. Lattice defects and chemisorbed oxygen are probed using photoluminescence and Raman spectroscopy - crucially, however, this transparent semiconductor material retains a bandgap in the ultraviolet (3.30-3.48 eV) and high transparency (throughout the visible spectral regime) across the doping range. © 2012 Elsevier B.V.
Resumo:
This paper addresses the analytical solution of the mixed-mode bending (MMB) problem. The first published solutions used a load separation in pure mode I and mode II and were applied for a crack length less than the beam half-span, a <= L. In later publications, the same mode separation was used in deriving the analytical solution for crack lengths bigger than the beam half-span, a > L. In this paper it is shown that this mode separation is not valid when a > L and in some cases may lead to very erroneous results. The correct mode separation and the corresponding analytical solutions, when a > L, are presented. Results, of force vs. displacement and force vs. crack length graphs, obtained using the existing formulation and the corrected formulation are compared. A finite element solution, which does not use mode separation, is also presented
A pseudo-transient solution strategy for the analysis of delamination by means of interface elements
Resumo:
Recent efforts in the finite element modelling of delamination have concentrated on the development of cohesive interface elements. These are characterised by a bilinear constitutive law, where there is an initial high positive stiffness until a threshold stress level is reached, followed by a negative tangent stiffness representing softening (or damage evolution). Complete decohesion occurs when the amount of work done per unit area of crack surface is equal to a critical strain energy release rate. It is difficult to achieve a stable, oscillation-free solution beyond the onset of damage, using standard implicit quasi-static methods, unless a very refined mesh is used. In the present paper, a new solution strategy is proposed based on a pseudo-transient formulation and demonstrated through the modelling of a double cantilever beam undergoing Mode I delamination. A detailed analysis into the sensitivity of the user-defined parameters is also presented. Comparisons with other published solutions using a quasi-static formulation show that the pseudo-transient formulation gives improved accuracy and oscillation-free results with coarser meshes
Resumo:
Tea waste (TW) and Date pits (DP) were investigated for their potential to remove toxic Cr(VI) ions from aqueous solution. Investigations showed that the majority of the bound Cr(VI) ions were reduced to Cr(III) after biosorption at acidic conditions. The electrons for the reduction of Cr(VI) may have been donated from the TW and DP biomasses. The experimental data obtained for Cr(VI)-TW and Cr(VI)-DP at different solution temperatures indicate a multilayer type biosorption, which explains why the Sips isotherm accurately represents the experimental data obtained in this study. The Sips maximum biosorption capacities of Cr(VI) onto TW and DP were 5.768 and 3.199 mmol/g at 333 K, respectively, which is comparatively superior to most other low-cost biomaterials. Fourier transform infrared spectroscopic analysis of the metal loaded biosorbents confirmed the participation of -COOH, -NH and O-CH groups in the reduction and complexation of chromium. Thermodynamic parameters demonstrated that the biosorption of Cr(VI) onto TW and DP biomass was endothermic, spontaneous and feasible at 303-333 K. The results evidently indicated that tea waste and date pits would be suitable biosorbents for Cr(VI) in wastewater under specific conditions.