88 resultados para silver nanoparticle
Resumo:
Modification of citrate and hydroxylamine reduced Ag colloids with thiocholine bromide, a thiol functionalized quaternary ammonium salt, creates particles where the zeta potential is switched from the normal values of ca. -50 mV to ca. + 50 mV. These colloids are stable but can be aggregated with metal salts in much the same way as the parent colloids. They are excellent SERS substrates for detection of anionic targets since their positive zeta potentials promote adsorption of negatively charged ions. This is important because the vast majority of published SERS studies involve cationic or neutral targets. Moreover, the fact that the modifier is a quaternary ammonium ion means that the negative surface charge is maintained even at alkaline pH. The modified colloids can be used to detect compounds which cannot be detected using conventional negatively-charged citrate or hydroxylamine reduced metal nanoparticles, for example the detection limit was 5.0 x 10(-5) M for perchlorate and
Resumo:
Adequate silicon fertilization greatly boosts rice yield and mitigates biotic and abiotic stress, and improves grain quality through lowering the content of cadmium and inorganic arsenic. This review on silicon dynamics in rice considers recent advances in our understanding of the role of silicon in rice, and the challenges of maintaining adequate silicon fertility within rice paddy systems. Silicon is increasingly considered as an element required for optimal plant performance, particularly in rice. Plants can survive with very low silicon under laboratory/glasshouse conditions, but this is highly artificial and, thus, silicon can be considered as essential for proper plant function in its environment. Silicon is incorporated into structural components of rice cell walls were it increases cell and tissue rigidity in the plant. Structural silicon provides physical protection to plants against microbial infection and insect attack as well as reducing the quality of the tissue to the predating organisms. The abiotic benefits are due to silicon's effect on overall organ strength. This helps protect against lodging, drought stress, high temperature (through efficient maintenance of transpiration), and photosynthesis by protecting against high UV. Furthermore, silicon also protects the plant from saline stress and against a range of toxic metal stresses (arsenic, cadmium, chromium, copper, nickel and zinc). Added to this, silicon application decreases grain concentrations of various human carcinogens, in particular arsenic, antimony and cadmium. As rice is efficient at stripping bioavailable silicon from the soil, recycling of silicon rich rice straw biomass or addition of inorganic silicon fertilizer, primarily obtained from iron and steel slag, needs careful management. Silicon in the soil may be lost if the silicon-cycle, traditionally achieved via composting of rice straw and returning it to the land, is being broken. As composting of rice straw and incorporation of composted or non-composted straw back to land are resource intensive activities, these activities are declining due to population shifts from the countryside to cities. Processes that accelerate rice straw composting, therefore, need to be identified to aid more efficient use of this resource. In addition, rice genetics may help address declining available silicon in paddy soils: for example by selecting for characteristics during breeding that lead to an increased ability of roots to access recalcitrant silicon sources from soil and/or via selection for traits that aid the maintenance of a high silicon status in shoots. Recent advances in understanding the genetic regulation of silicon uptake and transport by rice plants will aid these goals.
Resumo:
Resumo:
Sepsis is the most frequent cause of death in hospitalized patients, and severe sepsis is a leading contributory factor to acute respiratory distress syndrome (ARDS). At present, there is no effective treatment for these conditions, and care is primarily supportive. Murine sialic acid-binding immunoglobulin-like lectin-E (Siglec-E) and its human orthologs Siglec-7 and Siglec-9 are immunomodulatory receptors found predominantly on hematopoietic cells. These receptors are important negative regulators of acute inflammatory responses and are potential targets for the treatment of sepsis and ARDS. We describe a Siglec-targeting platform consisting of poly(lactic-co-glycolic acid) nanoparticles decorated with a natural Siglec ligand, di(α2→8) N-acetylneuraminic acid (α2,8 NANA-NP). This nanoparticle induced enhanced oligomerization of the murine Siglec-E receptor on the surface of macrophages, unlike the free α2,8 NANA ligand. Furthermore, treatment of murine macrophages with these nanoparticles blocked the production of lipopolysaccharide-induced inflammatory cytokines in a Siglec-E-dependent manner. The nanoparticles were also therapeutically beneficial in vivo in both systemic and pulmonary murine models replicating inflammatory features of sepsis and ARDS. Moreover, we confirmed the anti-inflammatory effect of these nanoparticles on human monocytes and macrophages in vitro and in a human ex vivo lung perfusion (EVLP) model of lung injury. We also established that interleukin-10 (IL-10) induced Siglec-E expression and α2,8 NANA-NP further augmented the expression of IL-10. Indeed, the effectiveness of the nanoparticle depended on IL-10. Collectively, these results demonstrated a therapeutic effect of targeting Siglec receptors with a nanoparticle-based platform under inflammatory conditions.
Resumo:
Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as vehicles for drug delivery, agents for photothermal therapy, image contrast and radiosensitisation. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early phase clinical trials. In particular the increasing preclinical evidence for gold nanoparticles as sensitizers with ionizing radiation in vitro and in vivo is discussed.
Resumo:
We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.
Resumo:
There is considerable interest in the use of heavy atom nanoparticles as theranostic contrast agents due to their high radiation cross-section compared to soft tissue. However, published studies have primarily focused on applications of gold nanoparticles. This study applies Monte Carlo radiation transport modelling using Geant4 to evaluate the macro- and micro-scale radiation dose enhancement following X-ray irradiation with both imaging and therapeutic energies on nanoparticles consisting of stable elements heavier than silicon. An approach based on the Local Effect Model was also used to assess potential biological impacts. While macroscopic dose enhancement is well predicted by simple absorption cross-sections, nanoscale dose deposition has a much more complex dependency on atomic number, with local maxima around germanium (Z = 32) and gadolinium (Z = 64), driven by variations in secondary Auger electron spectra, which translate into significant variations in biological effectiveness. These differences may provide a valuable tool for predicting and elucidating fundamental mechanisms of these agents as they move towards clinical application.
Resumo:
MCF, NbMCF and TaMCF Mesostructured Cellular Foams were used as supports for platinum and silver (1 wt%). Metallic and bimetallic catalysts were prepared by grafting of metal species on APTMS (3-aminopropyltrimethoxysilane) and MPTMS (2-mercaptopropyltrimethoxysilane) functionalized supports. Characterizations by X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF) spectroscopy, and in situ Fourier Transform Infrared (FTIR) spectroscopy allowed to monitor the oxidation state of metals and surface properties of the catalysts, in particular the formation of bimetallic phases and the strong metal–support interactions. It was evidenced that the functionalization agent (APTMS or MPTMS) influenced the metals dispersion, the type of bimetallic species and Nb/Ta interaction with Pt/Ag. Strong Nb–Ag interaction led to the reduction of niobium in the support and oxidation of silver. MPTMS interacted at first with Pt to form Pt–Ag ensembles highly active in CH3OH oxidation. The effect of Pt particle size and platinum–silver interaction on methanol oxidation was also considered. The nature of the functionalization agent strongly influenced the species formed on the surface during reaction with methanol and determined the catalytic activity and selectivity.
Resumo:
Radiation resistance and toxicity in normal tissues are limiting factors in the efficacy of radiotherapy. Gold nanoparticles (GNPs) have been shown to be effective at enhancing radiation-induced cell death, and were initially proposed to physically enhance the radiation dose deposited. However, biological responses of GNP radiosensitization based on physical assumptions alone are not predictive of radiosensitisation and therefore there is a fundamental research need to determine biological mechanisms of response to GNPs alone and in combination with ionising radiation. This study aimed to identify novel mechanisms of cancer cell radiosensitisation through the use of GNPs, focusing on their ability to induce cellular oxidative stress and disrupt mitochondrial function. Using N-acetyl-cysteine, we found mitochondrial oxidation to be a key event prior to radiation for the radiosensitisation of cancer cells and suggests the overall cellular effects of GNP radiosensitisation are a result of their interaction with protein disulphide isomerase (PDI). This investigation identifies PDI and mitochondrial oxidation as novel targets for radiosensitisation.
Resumo:
To create a clinically relevant gold nanoparticle (AuNP) treatment, the surface must be functionalized with multiple ligands such as drugs, antifouling agents and targeting moieties. However, attaching several ligands of differing chemistries and lengths, while ensuring they all retain their biological functionality remains a challenge. This review compares the two most widely employed methods of surface co-functionalization, namely mixed monolayers and hetero-bifunctional linkers. While there are numerous in vitro studies successfully utilizing both surface arrangements, there is little consensus regarding their relative merits. Animal and preclinical studies have demonstrated the effectiveness of mixed monolayer functionalization and while some promising in vitro results have been reported for PEG linker capped AuNPs, any potential benefits of the approach are not yet fully understood.
Resumo:
To create clinically useful gold nanoparticle (AuNP) based cancer therapeutics it is necessary to co-functionalize the AuNP surface with a range of moieties; e.g. Polyethylene Glycol (PEG), peptides and drugs. AuNPs can be functionalized by creating either a mixed monolayer by attaching all the moieties directly to the surface using thiol chemistry, or by binding groups to the surface by means of a bifunctional polyethylene glycol (PEG) linker. The linker methodology has the potential to enhance bioavailability and the amount of functional agent that can be attached. While there is a large body of published work using both surface arrangements independently, the impact of attachment methodology on stability, non-specific protein adsorption and cellular uptake is not well understood, with no published studies directly comparing the two most frequently employed approaches. This paper compares the two methodologies by synthesizing and characterizing PEG and Receptor Mediated Endocytosis (RME) peptide co-functionalized AuNPs prepared using both the mixed monolayer and linker approaches. Successful attachment of both PEG and RME peptide using the two methods was confirmed using Dynamic Light Scattering, Fourier Transform Infrared Spectroscopy and gel electrophoresis. It was observed that while the 'as synthesized' citrate capped AuNPs agglomerated under physiological salt conditions, all the mixed monolayer and PEG linker capped samples remained stable at 1M NaCl, and were stable in PBS over extended periods. While it was noted that both functionalization methods inhibited non-specific protein attachment, the mixed monolayer samples did show some changes in gel electrophoresis migration profile after incubation with fetal calf serum. PEG renders the AuNP stable in-vivo however, studies with MDA-MB-231 and MCF 10A cell lines indicated that functionalization with PEG, blocks cellular uptake. It was observed that co-functionalization with RME peptide using both the mixed monolayer and PEG linker methods greatly enhanced cellular internalization compared to PEG capped AuNPs.