104 resultados para semantic grid
Resumo:
Optimal fault ride-through (FRT) conditions for a doubly-fed induction generator (DFIG) during a transient grid fault are analyzed with special emphasis on improving the active power generation profile. The transition states due to crowbar activation during transient faults are investigated to exploit the maximum power during the fault and post-fault period. It has been identified that operating slip, severity of fault and crowbar resistance have a direct impact on the power capability of a DFIG, and crowbar resistance can be chosen to optimize the power capability. It has been further shown that an extended crowbar period can deliver enhanced inertial response following the transient fault. The converter protection and drive train dynamics have also been analyzed while choosing the optimum crowbar resistance and delivering enhanced inertial support for an extended crowbar period.
Resumo:
The doubly-fed induction generator (DFIG) now represents the dominant technology in wind turbine design. One consequence of this is limited damping and inertial response during transient grid disturbances. A dasiadecoupledpsila strategy is therefore proposed to operate the DFIG grid-side converter (GSC) as a static synchronous compensator (STATCOM) during a fault, supporting the local voltage, while the DFIG operates as a fixed-speed induction generator (FSIG) providing an inertial response. The modeling aspects of the decoupled control strategy, the selection of protection control settings, the significance of the fault location and operation at sub- and super-synchronous speeds are analyzed in detail. In addition, a case study is developed to validate the proposed strategy under different wind penetrations levels. The simulations show that suitable configuration of the decoupled strategy can be deployed to improve system voltage stability and inertial response for a range of scenarios, especially at high wind penetration. The conclusions are placed in context of the practical limitations of the technology employed and the system conditions.
Resumo:
This paper investigates the pull-out behaviour (particularly the bearing resistance) of a steel grid reinforcement embedded in silty sand using laboratory tests and numerical analyses. It is demonstrated that the various common analytical equations for calculating the bearing component of pull-out resistance give a wide range of calculated values, up to about 200% disparity. The disparity will increase further if the issue of whether to use the peak or critical state friction angle is brought in. Furthermore, these equations suggest that the bearing resistance factor, N, is only a function of soil friction angle which is not consistent with some design guidelines. In this investigation, a series of large scale laboratory pull-out tests under different test pressures were conducted. The test results unambiguously confirmed that the N factor is a function of test pressure. A modified equation for calculating N is also proposed. To have more in-depth understanding of the pull-out behaviour, the tests were modelled numerically. The input parameters for the numerical analysis were obtained from laboratory triaxial tests. The analysis results were compared with the experimental results. Good agreement between experimental and numerical results was achieved if the strain-softening behaviour from peak strength to critical state condition was captured by the soil model used. © 2013 Elsevier Ltd.
Resumo:
The Supreme Court of the United States in Feist v. Rural (Feist, 1991) specified that compilations or databases, and other works, must have a minimal degree of creativity to be copyrightable. The significance and global diffusion of the decision is only matched by the difficulties it has posed for interpretation. The judgment does not specify what is to be understood by creativity, although it does give a full account of the negative of creativity, as ‘so mechanical or routine as to require no creativity whatsoever’ (Feist, 1991, p.362). The negative of creativity as highly mechanical has particularly diffused globally.
A recent interpretation has correlated ‘so mechanical’ (Feist, 1991) with an automatic mechanical procedure or computational process, using a rigorous exegesis fully to correlate the two uses of mechanical. The negative of creativity is then understood as an automatic computation and as a highly routine process. Creativity is itself is conversely understood as non-computational activity, above a certain level of routinicity (Warner, 2013).
The distinction between the negative of creativity and creativity is strongly analogous to an independently developed distinction between forms of mental labour, between semantic and syntactic labour. Semantic labour is understood as human labour motivated by considerations of meaning and syntactic labour as concerned solely with patterns. Semantic labour is distinctively human while syntactic labour can be directly humanly conducted or delegated to machine, as an automatic computational process (Warner, 2005; 2010, pp.33-41).
The value of the analogy is to greatly increase the intersubjective scope of the distinction between semantic and syntactic mental labour. The global diffusion of the standard for extreme absence of copyrightability embodied in the judgment also indicates the possibility that the distinction fully captures the current transformation in the distribution of mental labour, where syntactic tasks which were previously humanly performed are now increasingly conducted by machine.
The paper has substantive and methodological relevance to the conference themes. Substantively, it is concerned with human creativity, with rationality as not reducible to computation, and has relevance to the language myth, through its indirect endorsement of a non-computable or not mechanical semantics. These themes are supported by the underlying idea of technology as a human construction. Methodologically, it is rooted in the humanities and conducts critical thinking through exegesis and empirically tested theoretical development
References
Feist. (1991). Feist Publications, Inc. v. Rural Tel. Service Co., Inc. 499 U.S. 340.
Warner, J. (2005). Labor in information systems. Annual Review of Information Science and Technology. 39, 2005, pp.551-573.
Warner, J. (2010). Human Information Retrieval (History and Foundations of Information Science Series). Cambridge, MA: MIT Press.
Warner, J. (2013). Creativity for Feist. Journal of the American Society for Information Science and Technology. 64, 6, 2013, pp.1173-1192.
Resumo:
In this paper a model of grid computation that supports both heterogeneity and dynamicity is presented. The model presupposes that user sites contain software components awaiting execution on the grid. User sites and grid sites interact by means of managers which control dynamic behaviour. The orchestration language ORC [9,10] offers an abstract means of specifying operations for resource acquisition and execution monitoring while allowing for the possibility of non-responsive hardware. It is demonstrated that ORC is sufficiently expressive to model typical kinds of grid interactions.
Resumo:
Following earlier work demonstrating the utility of Orc as a means of specifying and reasoning about grid applications we propose the enhancement of such specifications with metadata that provide a means to extend an Orc specification with implementation oriented information. We argue that such specifications provide a useful refinement step in allowing reasoning about implementation related issues ahead of actual implementation or even prototyping. As examples, we demonstrate how such extended specifications can be used for investigating security related issues and for evaluating the cost of handling grid resource faults. The approach emphasises a semi-formal style of reasoning that makes maximum use of programmer domain knowledge and experience.
Resumo:
Due to the intermittent nature of renewable generation it is desirable to consider the potential of controlling the demand-side load to smooth overall system demand. The architecture and control methodologies of such a system on a large scale would require careful consideration. Some of these considerations are discussed in this paper; such as communications infrastructure, systems architecture, control methodologies and security. A domestic fridge is used in this paper as an example of a controllable appliance. A layered approach to smart-grid is introduced and it can be observed how each smart-grid component from physical cables, to the end-devices (or smart-applications) can be mapped to these set layers. It is clear how security plays an integral part in each component of the smart-grid so this is also an integral part of each layer. The controllable fridge is described in detail and as one potential smart-grid application which maps to the layered approach. A demonstration system is presented which involves a Raspberry Pi (a low-power, low-cost device representing the appliance controller).
Resumo:
A ditopic ligand (1), containing two tridentate bis(acylhydrazone) subunits and bearing both long alkyl chains and hydrogen-bonding groups, has been synthesised. Metal cation binding in the presence of a base leads to hierarchical self-assembly, forming first a neutral [2 x 2] grid-type complex (2) that hierarchically assembles into metallosupramolecular polymer gels in toluene.
Resumo:
No abstract available
Resumo:
The next-generation smart grid will rely highly on telecommunications infrastructure for data transfer between various systems. Anywhere we have data transfer in a system is a potential security threat. When we consider the possibility of smart grid data being at the heart of our critical systems infrastructure it is imperative that we do all we can to ensure the confidentiality, availability and integrity of the data. A discussion on security itself is outside the scope of this paper, but if we assume the network to be as secure as possible we must consider what we can do to detect when that security fails, or when the attacks comes from the inside of the network. One way to do this is to setup a hacker-trap, or honeypot. A honeypot is a device or service on a network which appears legitimate, but is in-fact a trap setup to catch breech attempts. This paper identifies the different types of honeypot and describes where each may be used. The authors have setup a test honeypot system which has been live for some time. The test system has been setup to emulate a device on a utility network. The system has had many hits, which are described in detail by the authors. Finally, the authors discuss how larger-scale systems in utilities may benefit from honeypot placement.
Resumo:
The availability of electricity is fundamental to modern society. It is at the top of the list of critical infrastructures and its interruption can have severe consequences. This highly important system is now evolving to become more reliable, efficient, and clean. This evolving infrastructure has become known as the smart grid; and these future smart grid systems will rely heavily on ICT. This infrastructure will require many servers and due to the nature of the grid, many of these systems will be geographically diverse requiring communication links. At the heart of this ICT infrastructure will be security. At each level of the smart grid from smart metering right through to remote sensing and control networks, security will be a key factor for system design consideration. With an increased number of ICT systems in place the security risk also increases. In this paper the authors discuss the changing nature of security in relation to the smart grid by looking at the move from legacy systems to more modern smart grid systems. The potential planes of attack for future smart grid systems are identified, and the general anatomy of a cyber-attack is presented. The authors then introduce the various threat levels of different types of attack and the mitigation techniques that could be put in place for each. Finally, the authors' introduce a Phasor Measurement Unit (PMU) communication system (operated by the authors) that can be used as a test-bed for some of the proposed future security research.
Resumo:
This paper describes a fridge-freezer smart load model, which responds to external signals from the wholesale electricity market to support grid operations while switching the fridge-freezer on and off to maintain optimum operations for the owner. The key parameters of the model are the appliance dimensions, thermal mass, the fridge and freezer thermal time constants and the compressor power consumption. The model demonstrates that control strategies help to minimise load at times when the grid is under stress from high demand, and shift some load to a lower wholesale price or when there is excess renewable power. Three control strategies are proposed, based on peak shaving and valley filling, price signals and wind availability.