181 resultados para range uncertainty
Resumo:
A wide tuning range voltage controlled oscillator (VCO) with novel architecture is proposed in this work. The entire circuit consists of a VCO core, a summing circuit, a single-ended to differential (STD) converter and a buffer amplifier. The VCO core oscillates at half the desired frequency and the second harmonic of the VCO core is extracted by the summing circuit, which is then converted to a differential pair by the STD. The entire VCO circuit operates from 58.85 to 70.85 GHz with 20% frequency tuning range. The measured VCO gain is less than 1.6 GHz/V. The measured phase noise at 3 MHz offset is less than -78 dBc/Hz across the entire tuning range. The differential phase error of the output signals is measured by down converting the VCO output signals to low gigahertz frequency using an on-chip mixer. The measured differential phase error is less than 8°. The VCO circuit, which is constructed using 0.35 µm SiGe technology, occupies 770 × 550 µm2 die area and consumes 62 mA under 3.5 V supply.
Resumo:
In this paper the use of eigenvalue stability analysis of very large dimension aeroelastic numerical models arising from the exploitation of computational fluid dynamics is reviewed. A formulation based on a block reduction of the system Jacobian proves powerful to allow various numerical algorithms to be exploited, including frequency domain solvers, reconstruction of a term describing the fluid–structure interaction from the sparse data which incurs the main computational cost, and sampling to place the expensive samples where they are most needed. The stability formulation also allows non-deterministic analysis to be carried out very efficiently through the use of an approximate Newton solver. Finally, the system eigenvectors are exploited to produce nonlinear and parameterised reduced order models for computing limit cycle responses. The performance of the methods is illustrated with results from a number of academic and large dimension aircraft test cases.
Resumo:
A new microfluidic-based approach to measuring liquid thermal conductivity is developed to address the requirement in many practical applications for measurements using small (microlitre) sample size and integration into a compact device. The approach also gives the possibility of high-throughput testing. A resistance heater and temperature sensor are incorporated into a glass microfluidic chip to allow transmission and detection of a planar thermal wave crossing a thin layer of the sample. The device is designed so that heat transfer is locally one-dimensional during a short initial time period. This allows the detected temperature transient to be separated into two distinct components: a short-time, purely one-dimensional part from which sample thermal conductivity can be determined and a remaining long-time part containing the effects of three-dimensionality and of the finite size of surrounding thermal reservoirs. Identification of the one-dimensional component yields a steady temperature difference from which sample thermal conductivity can be determined. Calibration is required to give correct representation of changing heater resistance, system layer thicknesses and solid material thermal conductivities with temperature. In this preliminary study, methanol/water mixtures are measured at atmospheric pressure over the temperature range 30-50A degrees C. The results show that the device has produced a measurement accuracy of within 2.5% over the range of thermal conductivity and temperature of the tests. A relation between measurement uncertainty and the geometric and thermal properties of the system is derived and this is used to identify ways that error could be further reduced.
Resumo:
Stochastic modeling of mortality rates focuses on fitting linear models to logarithmically adjusted mortality data from the middle or late ages. Whilst this modeling enables insurers to project mortality rates and hence price mortality products it does not provide good fit for younger aged mortality. Mortality rates below the early 20's are important to model as they give an insight into estimates of the cohort effect for more recent years of birth. It is also important given the cumulative nature of life expectancy to be able to forecast mortality improvements at all ages. When we attempt to fit existing models to a wider age range, 5-89, rather than 20-89 or 50-89, their weaknesses are revealed as the results are not satisfactory. The linear innovations in existing models are not flexible enough to capture the non-linear profile of mortality rates that we see at the lower ages. In this paper we modify an existing 4 factor model of mortality to enable better fitting to a wider age range, and using data from seven developed countries our empirical results show that the proposed model has a better fit to the actual data, is robust, and has good forecasting ability.
Resumo:
Individuals subtly reminded of death, coalitional challenges, or feelings of uncertainty display exaggerated preferences for affirmations and against criticisms of their cultural in-groups. Terror management, coalitional psychology, and uncertainty management theories postulate this “worldview defense” effectas the output of mechanisms evolved either to allay the fear of death, foster social support, or reduce anxiety by increasing adherence to cultural values. In 4 studies, we report evidence for an alternative perspective. We argue that worldview defense owes to unconscious vigilance, a state of accentuatedreactivity to affective targets (which need not relate to cultural worldviews) that follows detection of subtle alarm cues (which need not pertain to death, coalitional challenges, or uncertainty). In Studies 1 and 2, death-primed participants produced exaggerated ratings of worldview-neutral affective targets. In Studies 3 and 4, subliminal threat manipulations unrelated to death, coalitional challenges, or uncertaintyevoked worldview defense. These results are discussed as they inform evolutionary interpretations of worldview defense and future investigations of the influence of unconscious alarm on judgment.
Resumo:
Symmetrical and unsymmetrical ligands containing terpyridyl coordinating units (N, N, N) or a cyclometalating equivalent (N, C, N), connected back-to-back either directly or via a p-terphenylene or 1,3-phenylene spacer, have been used to construct new diruthenium complexes. These compounds incorporate various terdentate chelates as capping ligands, to allow a double control of the electronic properties of each subcomplex and of the ensemble: via the terminal ligand or through the bridging fragment. Electronic coupling was studied from the intervalence transitions observed in several bimetallic ruthenium complexes of the bis-(cyclometalated) type differing by the substitution of a nitrogen atom by carbon in the terminal terpyridyl unit. The largest metal-metal interaction was found in complexes for which the terminal complexing unit is of the 1,3-di-2-pyridylbenzene type, i.e., with the carbon atom located on the metal-metal C-2 axis of the molecule. Investigations of the mechanism of interaction by extended Huckel calculations showed that the replacement of nitrogen by carbon raises the filled ligand levels, increasing the mixing with ligand orbitals and thus the metal-metal coupling. Finally, the intervalence transition was still observed for a bridging ligand containing three phenylene units as spacers, corresponding to a 24-Angstrom metal-metal distance.
Resumo:
It is more than a decade since scientists in the UK put forward evidence of a link between the emergence of a new variant of Creutzfeldt-Jakob Disease (vCJD) in humans, and a diminishing epidemic of Bovine Spongiform Encephalopathy, or BSE, in cattle. In the wake of this anniversary, the paper revisits two scientific narratives of risk, forged at different points along the developmental pathway of BSE science, including a series of advisory reports provided to the UK government between 1989 and 1994, and a symposium held in 2001 to assess the impact of the Phillips Inquiry. While the primary pathology of BSE became apparent relatively early on, uncertainties remain about the origins of BSE and its human variant, vCJD. The paper examines the handling of this sensitivity, and its communication, within these key documents, noting changes in patterns of uncertainty construction over time.
Resumo:
The nuclear accident in Chernobyl in 1986 is a dramatic example of the type of incidents that are characteristic of a risk society. The consequences of the incident are indeterminate, the causes complex and future developments unpredictable. Nothing can compensate for its effects and it affects a broad population indiscriminately. This paper examines the lived experience of those who experienced biographical disruption as residents of the region on the basis of qualitative case studies carried out in 2003 in the Chernobyl regions of Russia, Ukraine and Belarus. Our analysis indicates that informants tend to view their future as highly uncertain and unpredictable; they experience uncertainty about whether they are already contaminated, and they have to take hazardous decisions about where to go and what to eat. Fear, rumours and experts compete in supplying information to residents about the actual and potential consequences of the disaster, but there is little trust in, and only limited awareness of, the information that is provided. Most informants continue with their lives and do what they must or even what they like, even where the risks are known. They often describe their behaviour as being due to economic circumstances; where there is extreme poverty, even hazardous food sources are better than none. Unlike previous studies, we identify a pronounced tendency among informants not to separate the problems associated with the disaster from the hardships that have resulted from the break-up of the USSR, with both events creating a deep-seated sense of resignation and fatalism. Although most informants hold their governments to blame for lack of information, support and preventive measures, there is little or no collective action to have these put in place. This contrasts with previous research which has suggested that populations affected by disasters attribute crucial significance to that incident and, as a consequence, become increasingly politicized with regard to related policy agendas.