159 resultados para radioactive nuclear beam physics
Resumo:
The propagation of a Gaussian electromagnetic beam along the direction of magnetic field in a plasma is investigated. The extraordinary (E-x+iE(y)) mode is explicitly considered in the analysis, although the results for the ordinary mode can be obtained upon replacing the electron cyclotron frequency omega(c) by -omega(c). The propagating beam electric field is coupled to the surrounding plasma via the dielectric tensor, taking into account the existence of a stationary magnetic field. Both collisionless and collisional cases are considered, separately. Adopting an established methodological framework for beam propagation in unmagnetized plasmas, we extend to magnetized plasmas by considering the beam profile for points below the critical curve in the beam-power versus beam-width plane, and by employing a relationship among electron concentration and electron temperature, provided by kinetic theory (rather than phenomenology). It is shown that, for points lying above the critical curve in the beam-power versus beam-width plane, the beam experiences oscillatory convergence (self-focusing), while for points between the critical curve and divider curve, the beam undergoes oscillatory divergence and for points on and below the divider curve the beam suffers a steady divergence. For typical values of parameters, numerical results are presented and discussed. (C) 2008 American Institute of Physics.
Resumo:
The implication of radiation-induced bystander effect (RIBE) for both radiation protection and radiotherapy has attracted significant attention, but a key question is how to modulate the RIBE. The present study found that, when a fraction of glioblastoma cells in T98G population were individually targeted with precise helium particles through their nucleus, micronucleus (MN) were induced and its yield increased non-linearly with radiation dose. After co-culturing with irradiated cells, additional MN could be induced in the non-irradiated bystander cells and its yield was independent of irradiation dose, giving direct evidence of a RIBE. Further results showed that the RIBE could be eliminated by pifithrin-alpha (p53 inhibitor) but enhanced by wortmannin (PI3K inhibitor). Moreover, it was found that nitric oxide (NO) contributed to this RIBE, and the levels of NO of both irradiated cells and bystander cells could be extensively diminished by pifithrin-alpha but insignificantly reduced by wortmannin. Our results indicate that RIBE can be modulated by p53 and PI3K through a NO-dependent and NO-independent pathway, respectively. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we provide experimental evidence to show that enhanced bit error rate (BER) performance is possible using a retrodirective array operating in a dynamically varying multipath environment. The operation of such a system will be compared to that obtained by a conventional nonretrodirective array. The ability of the array to recover amplitude shift keyed encoded data transmitted from a remote location whose position is not known a priori is described. In addition, its ability to retransmit data inserted at the retrodirective array back to a spatially remote beacon location whose position is also not known beforehand is also demonstrated. Comparison with an equivalent conventional fixed beam antenna array utilizing an identical radiating aperture arrangement to that of the retrodirective array are given. These show that the retrodirective array can effectively exploit the presence of time varying multipath in order to give significant reductions in BER over what can be otherwise achieved. Additionally, the retrodirective system is shown to be able to deliver low BER regardless of whether line of sight is present or absent.
Resumo:
When recent experimental positronium (Ps) formation cross sections in noble gases have been compared with the most up-to date theoretical studies, the agreement is qualitative, but not quantitative. In this paper we re-examine this process and show that at low energies Ps formation must be treated non-perturbatively. We also look at Ps formation with inner shell electrons.
Resumo:
In this paper we use a zero-range potential (ZRP) method to model positron interaction with molecules. This allows us to investigate the e?ect of molecular vibrations on positron–molecule annihilation using the van der Waals dimer Kr2 as an example. We also use the ZRP to explore positron binding to polyatomics and examine the dependence of the binding energy on the size of the molecule for alkanes. We ?nd that a second bound state appears for a molecule with ten carbons, similar to recent experimental evidence for such a state emerging in alkanes with twelve carbons.
Resumo:
The development of cold trap-based positron beams and new scattering techniques has recently enabled the ?rst measurements of state-resolved positron-impact vibrational excitation cross sections. These measurements revealed a number of features worth further consideration, such as relatively sharp increases near threshold. This paper describes a comparison of the magnitudes and shapes of these cross sections with the predictions of the Born-dipole model. Agreement of the magnitudes of the cross sections varies widely, ranging from reasonable to excellent agreement for CO2 and CF4 to poor agreement for CO and CH4. In contrast, the energy dependence of these cross sections in all these cases is close to that predicted by the Born model.
Resumo:
Positron annihilation rates in many polyatomic molecular gases are anomalously high. Qualitatively, this can be explained by positron capture in vibrational Feshbach resonances, which can occur for molecules with positive positron a?nities [Gribakin, Phys. Rev. A 61 (2000) 022720]. To verify this idea quantitatively, we examine the densities of vibrational excitation spectra of alkanes. To understand the energy dependence of the annihilation rates for alkanes, we propose that positron capture is mediated by vibrational doorway states, in which positron binding is accompanied by the excitation of fundamentals.
Resumo:
The collimating effect of self-generated magnetic fields on fast-electron transport in solid aluminium targets irradiated by ultra-intense, picosecond laser pulses is investigated in this study. As the target thickness is varied in the range of 25 mu m to 1.4 mm, the maximum energies of protons accelerated from the rear surface are measured to infer changes in the fast-electron density and therefore the divergence of the fast-electron beam transported through the target. Purely ballistic spreading of the fast-electrons would result in a much faster decrease in the maximum proton energy with increasing target thickness than that measured. This implies that some degree of 'global' magnetic pinching of the fast-electrons occurs, particularly for thick (>400 mu m) targets. Numerical simulations of electron transport are in good agreement with the experimental data and show that the pinching effect of the magnetic field in thin targets is significantly reduced due to disruption of the field growth by refluxing fast-electrons.
Resumo:
The localized deposition of the energy of a laser pulse, as it ablates a solid target, introduces high thermal pressure gradients in the plasma. The thermal expansion of this laser-heated plasma into the ambient medium (ionized residual gas) triggers the formation of non-linear structures in the collisionless plasma. Here an electron-proton plasma is modelled with a particle-in-cell simulation to reproduce aspects of this plasma expansion. A jump is introduced in the thermal pressure of the plasma, across which the otherwise spatially uniform temperature and density change by a factor of 100. The electrons from the hot plasma expand into the cold one and the charge imbalance drags a beam of cold electrons into the hot plasma. This double layer reduces the electron temperature gradient. The presence of the low-pressure plasma modifies the proton dynamics compared with the plasma expansion into a vacuum. The jump in the thermal pressure develops into a primary shock. The fast protons, which move from the hot into the cold plasma in the form of a beam, give rise to the formation of phase space holes in the electron and proton distributions. The proton phase space holes develop into a secondary shock that thermalizes the beam.
A new algorithm for spectral and spatial reconstruction of proton beams from dosimetric measurements
Resumo:
We report on a new algorithm developed for the dosimetric analysis of broad-spectrum, multi-MeV laser-accelerated proton beams. The algorithm allows the reconstruction of the proton beam spectrum from radiochromic film data. This processing technique makes dosimetry measurements a viable alternative to the use of track detectors for spatially and spectrally resolved proton beam analysis. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
High power lasers are a tool that can be used to determine important parameters in the context of Warm Dense Matter, i.e. at the convergence of low-temperature plasma physics and finite-temperature condensed matter physics. Recent results concerning planet inner core materials such as water and iron are presented. We determined the equation of state, temperature and index of refraction of water for pressures up to 7 Mbar. The release state of iron in a LiF window allowed us to investigate the melting temperature near the inner core boundary conditions. Finally, the first application of proton radiography to the study of shocked material is also discussed.
Resumo:
The self-compression of a relativistic Gaussian laser pulse propagating in a non-uniform plasma is investigated. A linear density inhomogeneity (density ramp) is assumed in the axial direction. The nonlinear Schrodinger equation is first solved within a one-dimensional geometry by using the paraxial formalism to demonstrate the occurrence of longitudinal pulse compression and the associated increase in intensity. Both longitudinal and transverse self-compression in plasma is examined for a finite extent Gaussian laser pulse. A pair of appropriate trial functions, for the beam width parameter (in space) and the pulse width parameter (in time) are defined and the corresponding equations of space and time evolution are derived. A numerical investigation shows that inhomogeneity in the plasma can further boost the compression mechanism and localize the pulse intensity, in comparison with a homogeneous plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by more than ten times. Our findings indicate the possibility for the generation of particularly intense and short pulses, with relevance to the future development of tabletop high-power ultrashort laser pulse based particle acceleration devices and associated high harmonic generation. An extension of the model is proposed to investigate relativistic laser pulse compression in magnetized plasmas.
Resumo:
In a recent experimental study, the beam intensity profile of the Vulcan petawatt laser beam was measured; it was found that only 20% of the energy was contained within the full width at half maximum of 6.9 mu m and 50% within 16 mu m, suggesting a long-tailed non-Gaussian transverse beam profile. A q-Gaussian distribution function was suggested therein to reproduce this behavior. The spatial beam profile dynamics of a q-Gaussian laser beam propagating in relativistic plasma is investigated in this article. A non-paraxial theory is employed, taking into account nonlinearity via the relativistic decrease of the plasma frequency. We have studied analytically and numerically the dynamics of a relativistically guided beam and its dependence on the q-parameter. Numerical simulation results are shown to trace the dependence of the focusing length on the q-Gaussian profile.