77 resultados para precipitation and ultrasound


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A significant portion of the UK’s transportation system relies on a network of geotechnical earthworks (cuttings and embankments) that were constructed more than 100 years ago, whose stability is affected by the change in precipitation patterns experienced over the past few decades. The vulnerability of these structures requires a reliable, cost- and time-effective monitoring of their geomechanical condition. We have assessed the potential application of P-wave refraction for tracking the seasonal variations of seismic properties within an aged clay-filled railway embankment, located in southwest England. Seismic data were acquired repeatedly along the crest of the earthwork at regular time intervals, for a total period of 16 months. P-wave first-break times were picked from all available recorded traces, to obtain a set of hodocrones referenced to the same spatial locations, for various dates along the surveyed period of time. Traveltimes extracted from each acquisition were then compared to track the pattern of their temporal variability. The relevance of such variations over time was compared with the data experimental uncertainty. The multiple set of hodocrones was subsequently inverted using a tomographic approach, to retrieve a time-lapse model of VPVP for the embankment structure. To directly compare the reconstructed VPVP sections, identical initial models and spatial regularization were used for the inversion of all available data sets. A consistent temporal trend for P-wave traveltimes, and consequently for the reconstructed VPVP models, was identified. This pattern could be related to the seasonal distribution of precipitation and soil-water content measured on site.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To assess the repeatability and accuracy of optical biometry (Lenstar LS900 optical low-coherence reflectometry [OLCR] and IOLMaster partial coherence interferometry [PCI]) and applanation ultrasound biometry in highly myopic eyes. Setting: Division of Preventive Ophthalmology, Zhongshan Ophthalmic Center, Guangzhou, China. Design: Comparative evaluation of diagnostic technology. Methods: Biometric measurements were taken in highly myopic subjects with a spherical equivalent (SE) of -6.00 diopters (D) or higher and an axial length (AL) longer than 25.0 mm. Measurements of AL and anterior chamber depth (ACD) obtained by OLCR were compared with those obtained by PCI and applanation A-scan ultrasound. Right eyes were analyzed. Repeatability was evaluated using the coefficient of variation (CoV) and agreement, using Bland-Altman analyses. Results: The mean SE was -11.20 D ± 4.65 (SD). The CoVs for repeated AL measurements using OLCR, PCI, and applanation ultrasound were 0.06%, 0.07%, and 0.20%, respectively. The limits of agreement (LoA) for AL were 0.11 mm between OLCR and PCI, 1.01 mm between OLCR and applanation ultrasound, and 1.03 mm between PCI and ultrasound. The ACD values were 0.29 mm, 0.53 mm, and 0.51 mm, respectively. These repeatability and agreement results were comparable in eyes with extreme myopia (AL ≥27.0 mm) or posterior staphyloma. The mean radius of corneal curvature was similar between OLCR and PCI (7.66 ± 0.24 mm versus 7.64 ± 0.25 mm), with an LoA of 0.12 mm. Conclusion: Optical biometry provided more repeatable and precise measurements of biometric parameters, including AL and ACD, than applanation ultrasound biometry in highly myopic eyes. Financial Disclosure: No author has a financial or proprietary interest in any material or method mentioned. © 2012 ASCRS and ESCRS.