104 resultados para plasma materials processing
Resumo:
X-ray harmonic radiation extending to 3.3 angstrom, 3.8 keV from Petawatt class laser-solid interactions is presented. The harmonic spectra display a relativistic limit scaling up to similar to 3000th order, above which an intensity dependent scaling roll-over is observed. Highly directional beamed emission for harmonic photon energy h nu > 1 keV is found to be into a cone angle
Resumo:
Nuclear activation has been observed in materials exposed to the ablated plasma generated from high intensity laser-solid interactions (at focused intensities up to 2x10(19) W/cm(2)) and is produced by protons having energies up to 30 MeV. The energy spectrum of the protons is determined from these activation measurements and is found to be consistent with other ion diagnostics. The possible development of this technique for
Resumo:
We previously reported the identification of a novel family of immunomodulatory proteins, termed helminth defense molecules (HDMs), that are secreted by medically important trematode parasites. Since HDMs share biochemical, structural, and functional characteristics with mammalian cathelicidin-like host defense peptides (HDPs), we proposed that HDMs modulate the immune response via molecular mimicry of host molecules. In the present study, we report the mechanism by which HDMs influence the function of macrophages. We show that the HDM secreted by Fasciola hepatica (FhHDM-1) binds to macrophage plasma membrane lipid rafts via selective interaction with phospholipids and/or cholesterol before being internalized by endocytosis. Following internalization, FhHDM-1 is rapidly processed by lysosomal cathepsin L to release a short C-terminal peptide (containing a conserved amphipathic helix that is a key to HDM function), which then prevents the acidification of the endolysosomal compartments by inhibiting vacuolar ATPase activity. The resulting endolysosomal alkalization impedes macrophage antigen processing and prevents the transport of peptides to the cell surface in conjunction with MHC class II for presentation to CD4(+) T cells. Thus, we have elucidated a novel mechanism by which helminth pathogens alter innate immune cell function to assist their survival in the host.-Robinson, M. W., Alvarado, R., To, J., Hutchinson, A. T., Dowdell, S. N., Lund, M., Turnbull, L., Whitchurch, C. B., O'Brien, B. A., Dalton, J. P., Donnelly, S. A helminth cathelicidin-like protein suppresses antigen processing and presentation in macrophages via inhibition of lysosomal vATPase.
Resumo:
A new high performance, programmable image processing chip targeted at video and HDTV applications is described. This was initially developed for image small object recognition but has much broader functional application including 1D and 2D FIR filtering as well as neural network computation. The core of the circuit is made up of an array of twenty one multiplication-accumulation cells based on systolic architecture. Devices can be cascaded to increase the order of the filter both vertically and horizontally. The chip has been fabricated in a 0.6 µ, low power CMOS technology and operates on 10 bit input data at over 54 Megasamples per second. The introduction gives some background to the chip design and highlights that there are few other comparable devices. Section 2 gives a brief introduction to small object detection. The chip architecture and the chip design will be described in detail in the later sections.
Resumo:
Continuous wave rf plasma polymerization of 2-iodothiophene has been studied using X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES), and Fourier transform infrared spectroscopy (FTIR). The variation in plasma polymer stoichiometry and the extent of monomer fragmentation are found to be critically dependent upon the electrical discharge power.
Resumo:
Epidemiological studies show that elevated plasma levels of advanced glycation end products (AGEs) are associated with diabetes, kidney disease, and heart disease. Thus AGEs have been used as disease progression markers. However, the effects of variations in biological sample processing procedures on the level of AGEs in plasma/serum samples have not been investigated. The objective of this investigation was to assess the effect of variations in blood sample collection on measured Ne_(carboxy-methyl)lysine (CML), the best characterised AGE, and its homolog, Ne_(carboxyethyl)lysine (CEL). The investigation examined the effect on CML and CEL of different blood collection tubes, inclusion of a stabilising cocktail, effect of freeze thaw cycles, different storage times and temperatures, and effects of delaying centrifugation on a pooled sample from healthy volunteers. CML and CEL were measured in extracted samples by ultra_performance liquid chromatography-tandem mass spectrometry. Median CML and CEL ranged from 0.132 to 0.140 mM/M lys and from 0.053 to 0.060 mM/M lys, respectively. No significant difference was shown CML or CEL in plasma/serum samples. Therefore samples collected as part of epidemiological studies that do not undergo specific sample treatment at collection are suitable for measuring CML and CEL.
Resumo:
Plasma-induced non-equilibrium liquid chemistry is used to synthesize gold nanoparticles (AuNPs) without using any reducing or capping agents. The morphology and optical properties of the synthesized AuNPs are characterized by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. Plasma processing parameters affect the particle shape and size and the rate of the AuNP synthesis process. Particles of different shapes (e. g. spherical, triangular, hexagonal, pentagonal, etc) are synthesized in aqueous solutions. In particular, the size of the AuNPs can be tuned from 5 nm to several hundred nanometres by varying the initial gold precursor (HAuCl4) concentration from 2.5 mu M to 1 mM. In order to reveal details of the basic plasma-liquid interactions that lead to AuNP synthesis, we have measured the solution pH, conductivity and hydrogen peroxide (H2O2) concentration of the liquid after plasma processing, and conclude that H2O2 plays the role of the reducing agent which converts Au+3 ions to Au-0 atoms, leading to nucleation growth of the AuNPs.
Resumo:
This paper reports image analysis methods that have been developed to study the microstructural changes of non-wovens made by the hydroentanglement process. The validity of the image processing techniques has been ascertained by applying them to test images with known properties. The parameters in preprocessing of the scanning electron microscope (SEM) images used in image processing have been tested and optimized. The fibre orientation distribution is estimated using fast Fourier transform (FFT) and Hough transform (HT) methods. The results obtained using these two methods are in good agreement. The HT method is more demanding in computational time compared with the Fourier transform (FT) method. However, the advantage of the HT method is that the actual orientation of the lines can be concluded directly from the result of the transform without the need for any further computation. The distribution of the length of the straight fibre segments of the fabrics is evaluated by the HT method. The effect of curl of the fibres on the result of this evaluation is shown.
Resumo:
The image analysis techniques developed in Part 1 to study microstructural changes in non-woven fabrics are applied to measure the fibre orientation distribution and fibre length distribution of hydroentangled fabrics. The results are supported by strength and modulus measurements using samples from the same fabrics. It is shown that the techniques developed can successfully be used to assess the degree of entanglement of hydroentangled fabrics regardless of their thickness.
Resumo:
Processing of the 'CaaX' motif found on the C-termini of many proteins, including the proto-oncogene Ras, requires the ER (endoplasmic reticulum)-resident protease RCE1 (Ras-converting enzyme 1) and is necessary for the proper localization and function of many of these 'CaaX' proteins. In the present paper, we report that several mammalian species have a novel isoform (isoform 2) of RCE1 resulting from an alternate splice site and producing an N-terminally truncated protein. We demonstrate that both RCE1 isoform 1 and the newly identified isoform 2 are required to reinstate proper H-Ras processing and thus plasma membrane localization in RCE1-null cells. In addition, we show that the deubiquitinating enzyme USP17 (ubiquitin-specific protease 17), previously shown to modulate RCE1 activity, can regulate the abundance and localization of isoform 2. Furthermore, we show that isoform 2 is ubiquitinated on Lys43 and deubiquitinated by USP17. Collectively, the findings of the present study indicate that RCE1 isoform 2 is required for proper 'CaaX' processing and that USP17 can regulate this via its modulation of RCE1 isoform 2 ubiquitination.
Resumo:
Epidemiological studies show that elevated plasma levels of advanced glycation end products (AGEs) are associated with diabetes, kidney disease, and heart disease. Thus AGEs have been used as disease progression markers. However, the effects of variations in biological sample processing procedures on the level of AGEs in plasma/serum samples have not been investigated. The objective of this investigation was to assess the effect of variations in blood sample collection on measured N (ε)-(carboxymethyl)lysine (CML), the best characterised AGE, and its homolog, N (ε)-(carboxyethyl)lysine (CEL). The investigation examined the effect on CML and CEL of different blood collection tubes, inclusion of a stabilising cocktail, effect of freeze thaw cycles, different storage times and temperatures, and effects of delaying centrifugation on a pooled sample from healthy volunteers. CML and CEL were measured in extracted samples by ultra-performance liquid chromatography-tandem mass spectrometry. Median CML and CEL ranged from 0.132 to 0.140 mM/M lys and from 0.053 to 0.060 mM/M lys, respectively. No significant difference was shown CML or CEL in plasma/serum samples. Therefore samples collected as part of epidemiological studies that do not undergo specific sample treatment at collection are suitable for measuring CML and CEL.
Resumo:
Natural spider silk fibers have impressive mechanical properties (outperforming many man-made fibers) and are, moreover, biocompatible, biodegradable, and produced under benign conditions (using water as a solvent at ambient temperature). The problems associated with harvesting natural spider silks inspired us to devise a method to produce spider silk-like proteins biotechnologically (the first subject tackled in this highlight); we subsequently discuss their processing into various materials morphologies, and some potential technical and biomedical applications.
Resumo:
Silks are protein-based fibers made by arthropods for a variety of task-specific applications. In this article, we review the key features of silk proteins. This article initially focuses on the structure and function of silk proteins produced naturally by silkworms and spiders, followed by the biological and technical processing of silk proteins into a variety of morphologies (including capsules, fibers, films, foams, gels and spheres). Finally, we highlight the potential applications of silk-based materials.
Resumo:
The aim of this paper is to develop a new generation of extruder control system for recycled materials which has ability to automatically maintain constant a polymer melt viscosity of mixed recycled polymers during extrusion, regardless of variations in the Melt Flow Index (MFI) of recycled mixed grade high density polyethylene (HDPE) feedstock. The variations in MFI are due to differences in the source of the recycled material used. The work describes how melt viscosity for specific extruder/die system is calculated in real time using the rheological properties of the materials, the pressure drop through the extruder die and the actual throughput measurements using a gravimetric loss-in-weight hopper feeder. A closed-loop controller is also developed to automatically regulate screw speed and barrel temperature profile to achieve constant viscosity and enable consistent processing of variable grade recycled HDPE materials. Such a system will improve processability of mixed MFI polymers may also reduce the risk of polymer melt degradation, reduce producing large volumes of scrap/waste and lead to improvement in product quality. The experimental results of real time viscosity measurement and control using a 38 mm single screw extruder with different recycled HDPEs with widely different MFIs are reported in this work.