97 resultados para orthopaedic


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reliable prediction of long-term medical device performance using computer simulation requires consideration of variability in surgical procedure, as well as patient-specific factors. However, even deterministic simulation of long-term failure processes for such devices is time and resource consuming so that including variability can lead to excessive time to achieve useful predictions. This study investigates the use of an accelerated probabilistic framework for predicting the likely performance envelope of a device and applies it to femoral prosthesis loosening in cemented hip arthroplasty.
A creep and fatigue damage failure model for bone cement, in conjunction with an interfacial fatigue model for the implant–cement interface, was used to simulate loosening of a prosthesis within a cement mantle. A deterministic set of trial simulations was used to account for variability of a set of surgical and patient factors, and a response surface method was used to perform and accelerate a Monte Carlo simulation to achieve an estimate of the likely range of prosthesis loosening. The proposed framework was used to conceptually investigate the influence of prosthesis selection and surgical placement on prosthesis migration.
Results demonstrate that the response surface method is capable of dramatically reducing the time to achieve convergence in mean and variance of predicted response variables. A critical requirement for realistic predictions is the size and quality of the initial training dataset used to generate the response surface and further work is required to determine the recommendations for a minimum number of initial trials. Results of this conceptual application predicted that loosening was sensitive to the implant size and femoral width. Furthermore, different rankings of implant performance were predicted when only individual simulations (e.g. an average condition) were used to rank implants, compared with when stochastic simulations were used. In conclusion, the proposed framework provides a viable approach to predicting realistic ranges of loosening behaviour for orthopaedic implants in reduced timeframes compared with conventional Monte Carlo simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon carbide (SiC) is an important orthopaedic material due to its inert nature and superior mechanical and tribological properties. Some of the potential applications of silicon carbide include coating for stents to enhance hemocompatibility, coating for prosthetic-bearing surfaces and uncemented joint prosthetics. This study is the first to explore nanomechanical response of single crystal 4H-SiC through quasistatic nanoindentation. Displacement controlled quasistatic nanoindentation experiments were performed on single crystal 4H-SiC specimen using a blunt Berkovich indenter (300 nm tip radius) at extremely fine indentation depths of 5 nm, 10 nm, 12 nm, 20 nm, 25 nm and 50 nm. Load-displacement curve obtained from the indentation experiments showed yielding or incipient plasticity in 4H-SiC typically at a shear stress of about 21 GPa (~an indentation depth of 33.8 nm) through a pop-in event. An interesting observation was that the residual depth of indent showed three distinct patterns: (i) Positive depth hysteresis above 33 nm, (ii) no depth hysteresis at 12 nm, and (iii) negative depth hysteresis below 12 nm. This contrasting depth hysteresis phenomenon is hypothesized to originate due to the existence of compressive residual stresses (upto 143 MPa) induced in the specimen by the polishing process prior to the nanoindentation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION:

Dorsally displaced fractures of the distal radius fractures are one of the commonest in day-to-day practice. There is still no consensus among surgeons regarding the suitability of using volar or the dorsal cortex as basis for internal fixation for dorsally displaced fractures.

BACKGROUND:

We report an anatomical study, which compares the thickness of the volar and dorsal cortices of cadaveric adult radii using digital photography.

RESULTS:

Results of this study show that the volar cortex was statistically, significantly thicker than the dorsal cortex. We believe that the volar cortex may behave as the calcar of the distal radius and hence internal fixation devices applied to the volar cortex may provide a more stable internal fixation compared to those based on the dorsal cortex.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Musculoskeletal (MSK) complaints are common within primary care (1) (2) (3) but some General Practitioners (GPs)/family physicians do not feel comfortable managing these symptoms (3), preferring to refer onto hospital specialists or Integrated Clinical Assessment and Treatment Services (ICATs). Long waiting times for hospital outpatient reviews are a major cause of patient inconvenience and complaints (4). We therefore aimed to establish a GP-ran MSK and sport and exercise medicine (SEM) clinic based within a Belfast GP surgery that would contribute to a sustainable improvement in managing these common conditions within primary care as well as reducing waiting times for patients with these conditions to see a specialist. This shift from hospital-based to community-based management is in-keeping with recent policy changes within the UK health-system, including Transforming Your Care within Northern Ireland (NI) (5). The GP-ran MSK and SEM clinic was held monthly within a Belfast GP practice, staffed by one GP with a specialist interest in MSK and SEM conditions and its performance was reviewed over a three month period. Parameters audited included cases seen, orthopaedic and x-ray referral rates and secondary care referrals comparing the GP practice’s performance to the same time period in the previous year as well as patient satisfaction questionnaires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem-Musculoskeletal (MSK) symptoms are common within primary care but some GPs are not comfortable managing these; waiting times for hospital appointments are a major cause of patients’ complaints. Current UK healthcare policies emphasise a need for more community-based management. We aimed to pilot an innovative general practice-based clinic to improve the management of MSK and Sport and Exercise Medicine (SEM) symptoms within general practice.

The approach-This project was conducted in an inner-city practice of approximately 9,000 patients and 5 GP partners. The practice commissioned a novel monthly 4-hour clinic staffed by one GP with a specialist interest in MSK and SEM conditions. Each patient was allocated a 20-minute appointment. All primary care staff within the practice could refer any patient for whom they considered hospital referral appropriate, with no specific exclusion criteria. Management plans included injection therapy, exercise prescription and onward referral. After three months (August-October 2014) numbers of consultations, sources of referral, reasons for referral and management outcomes were described; patient satisfaction was assessed by questionnaire, offered to 10 randomly selected patients by reception staff and self-completed by patients. Costs of the clinic were compared to current options.

Findings- All patients (14 males; 21 females; aged 35-77 years), were seen within four weeks of referral (one third of orthopaedic referrals in 2013 waited over 9 weeks for appointment). Most were referred from other GPs; some came from physiotherapy and podiatry. Shoulder problems were the most frequent reason for referral. The commonest management option was steroid injection, with most patients being given advice regarding exercise and analgesia; there were 3 onward referrals (2 physiotherapy; 1 rheumatology).

Comparing August-October data in 2014 and 2013, total, orthopaedic and rheumatology referrals were reduced by 147, 2 and 3, respectively; within the practice MSK presentations and physiotherapy and x-ray referrals were 60, 47 and 90 fewer, respectively.

The cost per attendance at the clinic was £61; initial orthopaedic-ICAT assessments cost £82 and a consultant appointment £213.

Satisfaction questionnaires were returned by all 10 selected participants and provided positive feedback, expressing preference for community-based, rather than hospital, management.

Consequence- Our pilot study indicates that this novel service model has potential for efficient and effective management of MSK and SEM complaints in primary care, reducing the need for hospital referral and the clinical burden on general practices. The innovation deserves further evaluation in a full-scale trial to determine its generalisability to other practice settings and populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Induction of in vivo responses by implanted biomaterials is of great interest in the medical device field. Calcium phosphate bone cements (CPCs) can potentially promote natural bone remodelling and ingrowth in vivo and, as such are becoming more common place in a range of orthopaedic procedures. However, concerns remain regarding their mechanical and handling properties. Compressive modulus and fracture toughness of CPCs can be improved, without compromising injectability and setting time, through the incorporation of bovine collagen fibres1. Incorporation of marine derived collagen fibres has also yielded similar improvements2. It is hypothesised that, due to its role in bone formation and function, that incorporation of collagen in CPCs will also result in biological benefits.
The biological properties of α-TCP-CPC were largely unchanged by the incorporation of marine derived collagen. However, as a result of significant improvements to the mechanical properties, its incorporation may still result in a suitable alternative to some commercially available bone cements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodegradable polymers, such as PLA (Polylactide), come from renewable resources like corn starch and if disposed of correctly, degrade and become harmless to the ecosystem making them attractive alternatives to petroleum based polymers. PLA in particular is used in a variety of applications including medical devices, food packaging and waste disposal packaging. However, the industry faces challenges in melt processing of PLA due to its poor thermal stability which is influenced by processing temperatures and shearing.
Identification and control of suitable processing conditions is extremely challenging, usually relying on trial and error, and often sensitive to batch to batch variations. Off-line assessment in a lab environment can result in high scrap rates, long lead times and lengthy and expensive process development. Scrap rates are typically in the region of 25-30% for medical grade PLA costing between €2000-€5000/kg.
Additives are used to enhance material properties such as mechanical properties and may also have a therapeutic role in the case of bioresorbable medical devices, for example the release of calcium from orthopaedic implants such as fixation screws promotes healing. Additives can also reduce the costs involved as less of the polymer resin is required.
This study investigates the scope for monitoring, modelling and optimising processing conditions for twin screw extrusion of PLA and PLA w/calcium carbonate to achieve desired material properties. A DAQ system has been constructed to gather data from a bespoke measurement die comprising melt temperature; pressure drop along the length of the die; and UV-Vis spectral data which is shown to correlate to filler dispersion. Trials were carried out under a range of processing conditions using a Design of Experiments approach and samples were tested for mechanical properties, degradation rate and the release rate of calcium. Relationships between recorded process data and material characterisation results are explored.