84 resultados para organic ionic plastic crystals


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As is now well established, a first order expansion of the Hohenberg-Kohn total energy density functional about a trial input density, namely, the Harris-Foulkes functional, can be used to rationalize a non self consistent tight binding model. If the expansion is taken to second order then the energy and electron density matrix need to be calculated self consistently and from this functional one can derive a charge self consistent tight binding theory. In this paper we have used this to describe a polarizable ion tight binding model which has the benefit of treating charge transfer in point multipoles. This admits a ready description of ionic polarizability and crystal field splitting. It is necessary in constructing such a model to find a number of parameters that mimic their more exact counterparts in the density functional theory. We describe in detail how this is done using a combination of intuition, exact analytical fitting, and a genetic optimization algorithm. Having obtained model parameters we show that this constitutes a transferable scheme that can be applied rather universally to small and medium sized organic molecules. We have shown that the model gives a good account of static structural and dynamic vibrational properties of a library of molecules, and finally we demonstrate the model's capability by showing a real time simulation of an enolization reaction in aqueous solution. In two subsequent papers, we show that the model is a great deal more general in that it will describe solvents and solid substrates and that therefore we have created a self consistent quantum mechanical scheme that may be applied to simulations in heterogeneous catalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Milling of plant and soil material in plastic tubes, such as microcentrifuge tubes, over-estimates carbon (C) and under-estimates nitrogen (N) concentrations due to the introduction of polypropylene into milled samples, as identified using Fourier-transform infra-red spectroscopy.

This study compares C and N concentrations of roots and soil milled in microcentrifuge tubes versus stainless steel containers, demonstrating that a longer milling time, greater milling intensity, smaller sample size and inclusion of abrasive sample material all increase polypropylene contamination from plastic tubes leading to overestimation of C concentrations by up to 8 % (0.08 g g(-1)).

Erroneous estimations of C and N, and other analytes, must be assumed after milling in plastic tubes and milling methods should be adapted to minimise such error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work provides a study of mixtures of the azepanium-based ionic liquid (IL) N-methyl, N-butyl-azepanium bis[(trifluoromethane) sulfonyl]imide (Azp14TFSI) and propylene carbonate (PC) as electrolyte components in electrochemical double layer capacitors (EDLCs). The considered mixtures' properties were then compared to the properties of mixtures of N-butyl, N-methylpyrrolidinium bis[(trifluoromethane) sulfonyl]imide (Pyr14TFSI) and PC in terms of viscosity, conductivity and electrochemical behavior. The mixtures' operative potentials were found to be comparable to each other, leading to operative voltages as high as 3.5 V, while retaining the low viscosities and high conductivities of PC based EDLC electrolytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we present a comparative study of the thermophysical properties of two homologous ionic liquids, namely, trimethyl-sulfonium bis[(trifluoromethyl) sulfonyl]imide, [S111][TFSI], and trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide, [HN111][TFSI], and their mixtures with propylene carbonate, acetonitrile, or gamma butyrolactone as a function of temperature and composition. The influence of solvent addition on the viscosity, conductivity, and thermal properties of IL solutions was studied as a function of the solvent mole fraction from the maximum solubility of IL, xs, in each solvent to the pure solvent. In this case, xs is the composition corresponding to the maximum salt solubility in each liquid solvent at a given temperature from 258.15 to 353.15 K. The effect of temperature on the transport properties of each binary mixture was then investigated by fitting the experimental data using Arrhenius' law and the Vogel-Tamman-Fulcher (VTF) equation. The experimental data shows that the residual conductivity at low temperature, e.g., 263.15 K, of each binary mixture is exceptionally high. For example, conductivity values up to 35 and 42 mS·cm-1 were observed in the case of the [S 111][TFSI] + ACN and [HN111][TFSI] + ACN binary mixtures, respectively. Subsequently, a theoretical approach based on the conductivity and on the viscosity of electrolytes was formulated by treating the migration of ions as a dynamical process governed by ion-ion and solvent-ion interactions. Within this model, viscosity data sets were first analyzed using the Jones-Dole equation. Using this theoretical approach, excellent agreement was obtained between the experimental and calculated conductivities for the binary mixtures investigated at 298.15 K as a function of the composition up to the maximum solubility of the IL. Finally, the thermal characterization of the IL solutions, using DSC measurements, showed a number of features corresponding to different solid-solid phase transitions, TS-S, with extremely low melting entropies, indicating a strong organizational structure by easy rotation of methyl group. These ILs can be classified as plastic crystal materials and are promising as ambient-temperature solid electrolytes. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of porous organic cages is examined for the selective adsorption of sulphur hexafluoride (SF6) over nitrogen. Despite lacking any metal sites, a porous cage, CC3, shows the highest SF6/N2 selectivity reported for any material at ambient temperature and pressure, which translates to real separations in a gas breakthrough column. The SF6 uptake of these materials is considerably higher than would be expected from the static pore structures. The location of SF6 within these materials is elucidated by x-ray crystallography, and it is shown that cooperative diffusion and structural rearrangements in these molecular crystals can rationalize their superior SF6/N2 selectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel cyclic sulfonium cation-based ionic liquid (IL) with an ether-group appendage and the bis{(trifluoromethyl)sulfonyl}imide anion was synthesised and developed for electrochemical double layer capacitor (EDLC) testing. The synthesis and chemical-physical characterisation of the ether-group containing IL is reported in parallel with a similarly sized alkyl-functionalised sulfonium IL. Results of the chemical-physical measurements demonstrate how important transport properties, i.e. viscosity and conductivity, can be promoted through the introduction of the ether-functionality without impeding thermal, chemical or electrochemical stability of the IL. Although the apparent transport properties are improved relative to the alkyl-functionalised analogue, the ether-functionalised sulfonium cation-based IL exhibits moderately high viscosity, and poorer conductivity, when compared to traditional EDLC electrolytes based on organic solvents (propylene carbonate and acetonitrile). Electrochemical testing of the ether-functionalised sulfonium IL was conducted using activated carbon composite electrodes to inspect the performance of the IL as a solvent-free electrolyte for EDLC application. Good cycling stability was achieved over the studied range and the performance was comparable to other solvent free,
IL-based EDLC systems. Nevertheless, limitations of the attainable performance are primarily the result of sluggish transport properties and a restricted operative voltage of the IL, thus highlighting key aspects of this field which require further attention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolved CO2 measurements are usually made using a Severinghaus electrode, which is bulky and can suffer from electrical interference. In contrast, optical sensors for gaseous CO2, whilst not suffering these problems, are mainly used for making gaseous (not dissolved) CO2 measurements, due to dye leaching and protonation, especially at high ionic strengths (>0.01 M) and acidity (<pH 4). This is usually prevented by coating the sensor with a gas-permeable, but ion-impermeable, membrane (GPM). Herein, we introduce a highly sensitive, colourimetric-based, plastic film sensor for the measurement of both gaseous and dissolved CO2, in which a pH-sensitive dye, thymol blue (TB) is coated onto particles of hydrophilic silica to create a CO2-sensitive, TB-based pigment, which is then extruded into low density polyethylene (LDPE) to create a GPM-free, i.e. naked, TB plastic sensor film for gaseous and dissolved CO2 measurements. When used for making dissolved CO2 measurements, the hydrophobic nature of the LDPE renders the film: (i) indifferent to ionic strength, (ii) highly resistant to acid attack and (iii) stable when stored under ambient (dark) conditions for >8 months, with no loss of colour or function. Here, the performance of the TB plastic film is primarily assessed as a dissolved CO2 sensor in highly saline (3.5 wt%) water. The TB film is blue in the absence of CO2 and yellow in its presence, exhibiting 50% transition in its colour at ca. 0.18% CO2. This new type of CO2 sensor has great potential in the monitoring of CO2 levels in the hydrosphere, as well as elsewhere, e.g. food packaging and possibly patient monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Baeyer–Villiger oxidation of cyclic ketones, using H2O2 as the oxidising agent, was systematically studied using a range of metal chlorides in different solvents, and in neat chlorogallate(III) ionic liquids. The extremely high activity of GaCl3 in promoting oxidation with H2O2, irrespective of solvent, was reported for the first time. The activity of all other metal chlorides was strongly solvent-dependent. In particular, AlCl3 was very active in a protic solvent (ethanol), and tin chlorides, SnCl4 and SnCl2, were active in aprotic solvents (toluene and dioxane). In order to eliminate the need for volatile organic solvent, a Lewis acidic chlorogallate(III) ionic liquid was used in the place of GaCl3, which afforded typically 89–94% yields of lactones in 1–120 min, at ambient conditions. Raman and 71Ga NMR spectroscopic studies suggest that the active species, in both GaCl3 and chlorogallate(III) ionic liquid systems, are chlorohydroxygallate(III) anions, [GaCl3OH]−, which are the products of partial hydrolysis of GaCl3 and chlorogallate(III) anions; therefore, the presence of water is crucial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When organic esters or alcohols were dissolved in each of three novel ionic liquids (which have no effective vapour pressure), the vapour–liquid equilibria (as measured by infrared spectroscopy of the gas phase) revealed significant positive deviation from Raoult’s law for a wide range of perfume raw materials. The addition of water amplified the repulsive effect of the ionic liquid matrix, and this was exemplified by a series of ternary phase diagrams